- 高二年級數學優秀教案 推薦度:
- 相關推薦
高二年級數學優秀教案
作為一名優秀的教育工作者,常常需要準備教案,借助教案可以提高教學質量,收到預期的教學效果。教案要怎么寫呢?下面是小編為大家整理的高二年級數學優秀教案,歡迎大家分享。

高二年級數學優秀教案1
教學目標
1、知識與技能
(1)理解并掌握正弦函數的定義域、值域、周期性、(小)值、單調性、奇偶性;
(2)能熟練運用正弦函數的性質解題。
2、過程與方法
通過正弦函數在R上的圖像,讓學生探索出正弦函數的性質;講解例題,總結方法,鞏固練習。
3、情感態度與價值觀
通過本節的學習,培養學生創新能力、探索歸納能力;讓學生體驗自身探索成功的喜悅感,培養學生的自信心;使學生認識到轉化“矛盾”是解決問題的有效途經;培養學生形成實事求是的科學態度和鍥而不舍的鉆研精神。
教學重難點
重點:正弦函數的'性質。
難點:正弦函數的性質應用。
教學工具
投影儀
教學過程
【創設情境,揭示課題】
同學們,我們在數學一中已經學過函數,并掌握了討論一個函數性質的幾個角度,你還記得有哪些嗎?在上一次課中,我們已經學習了正弦函數的y=sinx在R上圖像,下面請同學們根據圖像一起討論一下它具有哪些性質?
【探究新知】
讓學生一邊看投影,一邊仔細觀察正弦曲線的圖像,并思考以下幾個問題:
(1)正弦函數的定義域是什么?
(2)正弦函數的值域是什么?
(3)它的最值情況如何?
(4)它的正負值區間如何分?
(5)?(x)=0的解集是多少?
師生一起歸納得出:
1、定義域:y=sinx的定義域為R
2、值域:引導回憶單位圓中的正弦函數線,結論:|sinx|≤1(有界性)
再看正弦函數線(圖象)驗證上述結論,所以y=sinx的值域為[—1,1]
高二年級數學優秀教案2
[學習目標]
(1)會用坐標法及距離公式證明Cα+β;
(2)會用替代法、誘導公式、同角三角函數關系式,由Cα+β推導Cα—β、Sα±β、Tα±β,切實理解上述公式間的關系與相互轉化;
(3)掌握公式Cα±β、Sα±β、Tα±β,并利用簡單的三角變換,解決求值、化簡三角式、證明三角恒等式等問題。
[學習重點]
兩角和與差的正弦、余弦、正切公式
[學習難點]
余弦和角公式的推導
[知識結構]
1、兩角和的余弦公式是三角函數一章和、差、倍公式系列的.基礎。其公式的證明是用坐標法,利用三角函數定義及平面內兩點間的距離公式,把兩角和α+β的余弦,化為單角α、β的三角函數(證明過程見課本)
2、通過下面各組數的值的比較:①cos(30°—90°)與cos30°—cos90°②sin(30°+60°)和sin30°+sin60°。我們應該得出如下結論:一般情況下,cos(α±β)≠cosα±cosβ,sin(α±β)≠sinα±sinβ。但不排除一些特例,如sin(0+α)=sin0+sinα=sinα。
3、當α、β中有一個是的整數倍時,應首選誘導公式進行變形。注意兩角和與差的三角函數是誘導公式等的基礎,而誘導公式是兩角和與差的三角函數的特例。
【高二年級數學優秀教案】相關文章:
高二必修三數學優秀教案10-14
高中高二數學必修四教案優秀05-15
高二年級數學優秀教案(五篇)09-13
高二下冊數學優秀教案08-14
高二數學公開課優秀教案(通用10篇)09-11
數學優秀教案09-11
高二英語Robots優秀教案08-15
小學數學優秀教案07-01
小學數學優秀教案09-13