<delect id="sj01t"></delect>
  1. <em id="sj01t"><label id="sj01t"></label></em>
  2. <div id="sj01t"></div>
    1. <em id="sj01t"></em>

            <div id="sj01t"></div>
            教案

            初中八年級數學教案得到直角三角形嗎

            時間:2025-02-22 22:38:08 教案 我要投稿
            • 相關推薦

            初中八年級數學教案得到直角三角形嗎

              一、學生起點分析

            初中八年級數學教案得到直角三角形嗎

              學生已經了勾股定理,并在先前其他內容學習中已經積累了一定百度一下的逆向思維、逆向研究的經驗,如:已知兩直線平行,有什么樣的結論?

              反之,滿足什么條件的兩直線是平行?因而,本課時由勾股定理出發逆向思考獲得逆命題,學生應該已經具備這樣的意識,但具體研究中

              可能要用到反證等思路,對現階段學生而言可能還具有一定困難,需要教師適時的引導。

              二、學習任務分析

              本節課是北師大版數學八年級(上)第一章《勾股定理》第2節。教學任務有:探索勾股定理的逆定理

              并利用該定理根據邊長判斷一個三角形是否是直角三角形,利用該定理解決一些簡單的實際問題;通過具體的數,增加對勾股數的直觀體驗。為此確定教學目標:

              ● 知識與技能目標

              1.理解勾股定理逆定理的具體內容及勾股數的概念;

              2.能根據所給三角形三邊的條件判斷三角形是否是直角三角形。

              ● 過程與方法目標

              1.經歷一般規律的探索過程,發展學生的抽象思維能力;

              2.經歷從實驗到驗證的過程,發展學生的數學歸納能力。

              ● 情感與態度目標

              1.體驗生活中的數學的應用價值,感受數學與人類生活的密切聯系,激發學生學數學、用數學的興趣;

              2.在探索過程中體驗成功的喜悅,樹立學習的自信心。

              教學重點

              理解勾股定理逆定理的具體內容。

              三、教法學法

              1.教學方法:實驗猜想歸納論證

              本節課的教學對象是初二學生,他們的參與意識較強,思維活躍,對通過實驗獲得數學結論已有一定的體驗

              但數學思維嚴謹的同學總是心存疑慮,利用邏輯推理的方式,讓同學心服口服顯得非常迫切,為了實現本節課的教學目標,我力求從以下三個方面對學生進行引導:

              (1)從創設問題情景入手,通過知識再現,孕育教學過程;

              (2)從學生活動出發,通過以舊引新,順勢教學過程;

              (3)利用探索,研究手段,通過思維深入,領悟教學過程。

              2.課前準備

              教具:教材、電腦、多媒體課件。

              學具:教材、筆記本、課堂練習本、文具。

              四、教學過程設計

              本節課設計了七個環節。第一環節:情境引入;第二環節:合作探究;第三環節:小試牛刀;第四環節:

              登高望遠;第五環節:鞏固提高;第六環節:交流小結;第七環節:布置作業。

              第一環節:情境引入

              內容:

              情境:1.直角三角形中,三邊長度之間滿足什么樣的關系?

              2.如果一個三角形中有兩邊的平方和等于第三邊的平方,那么這個三角形是否就是直角三角形呢?

              意圖:

              通過情境的創設引入新課,激發學生探究熱情。

              效果:

              從勾股定理逆向思維這一情景引入,提出問題,激發了學生的求知欲,為下一環節奠定了良好的基礎。

              第二環節:合作探究

              內容1:探究

              下面有三組數,分別是一個三角形的三邊長 ,①5,12,13;②7,24,25;③8,15,17;并回答這樣兩個問題:

              1.這三組數都滿足 嗎?

              2.分別以每組數為三邊作出三角形,用量角器量一量,它們都是直角三角形嗎?學生分為4人活動小組,每個小組可以任選其中的一組數。

              意圖:

              通過學生的合作探究,得出若一個三角形的三邊長 ,滿足 ,則這個三角形是直角三角形這一結論;在活動中體驗出數學結論的發現總是要經歷觀察、歸納、猜想和驗證的過程,同時遵循由特殊一般特殊的發展規律。

              效果:

              經過學生充分討論后,匯總各小組實驗結果發現:①5,12,13滿足 ,可以構成直角三角形;②7,24,25滿足 ,可以構成直角三角形;③8,15,17滿足 ,可以構成直角三角形。

              從上面的分組實驗很容易得出如下結論:

              如果一個三角形的三邊長 ,滿足 ,那么這個三角形是直角三角形

              內容2:說理

              提問:有同學認為測量結果可能有誤差,不同意這個發現。你認為這個發現正確嗎?你能給出一個更有說服力的理由嗎?

              意圖:讓學生明確,僅僅基于測量結果得到的結論未必可靠,需要進一步通過說理等方式使學生確信結論的可靠性,同時明晰結論:

              如果一個三角形的三邊長 ,滿足 ,那么這個三角形是直角三角形

              滿足 的三個正整數,稱為勾股數。

              注意事項:為了讓學生確認該結論,需要進行說理,有條件的班級,還可利用幾何畫板動畫演示,讓同學有一個直觀的認識。

              活動3:反思總結

              提問:

              1.同學們還能找出哪些勾股數呢?

              2.今天的結論與前面學習勾股定理有哪些異同呢?

              3.到今天為止,你能用哪些方法判斷一個三角形是直角三角形呢?

              4.通過今天同學們合作探究,你能體驗出一個數學結論的發現要經歷哪些過程呢?

              意圖:進一步讓學生認識該定理與勾股定理之間的關系

              第三環節:小試牛刀

              內容:

              1.下列哪幾組數據能作為直角三角形的三邊長?請說明理由。

              ①9,12,15; ②15,36,39; ③12,35,36; ④12,18,22

              解答:①②

              2.一個三角形的三邊長分別是 ,則這個三角形的面積是( )

              A 250 B 150 C 200 D 不能確定

              解答:B

              3.如圖1:在 中, 于 , ,則 是( )

              A 等腰三角形 B 銳角三角形

              C 直角三角形 D 鈍角三角形

              解答:C

              4.將直角三角形的三邊擴大相同的倍數后, (圖1)

              得到的三角形是( )

              A 直角三角形 B 銳角三角形

              C 鈍角三角形 D 不能確定

              解答:A

              意圖:

              通過練習,加強對勾股定理及勾股定理逆定理認識及應用

              效果

              每題都要求學生獨立完成(5分鐘),并指出各題分別用了哪些知識。

              第四環節:登高望遠

              內容:

              1.一個零件的形狀如圖2所示,按規定這個零件中 都應是直角。工人師傅量得這個零件各邊尺寸如圖3所示,這個零件符合要求嗎?

              解答:符合要求 , 又 ,

              2.一艘在海上朝正北方向航行的輪船,航行240海里時方位儀壞了,憑經驗,船長指揮船左傳90,繼續航行70海里,則距出發地250海里,你能判斷船轉彎后,是否沿正西方向航行?

              解答:由題意畫出相應的圖形

              AB=240海里,BC=70海里,,AC=250海里;在△ABC中

              =(250+240)(250-240)

              =4900= = 即 △ABC是Rt△

              答:船轉彎后,是沿正西方向航行的。

              意圖:

              利用勾股定理逆定理解決實際問題,進一步鞏固該定理。

              效果:

              學生能用自己的語言表達清楚解決問題的過程即可;利用三角形三邊數量關系 判斷一個三角形是直角三角形時,當遇見數據較大時,要懂得將 作適當變形( ),以便于計算。

              第五環節:鞏固提高

              內容:

              1.如圖4,在正方形ABCD中,AB=4,AE=2,DF=1, 圖中有幾個直角三角形,你是如何判斷的?與你的同伴交流。

              解答:4個直角三角形,它們分別是△ABE、△DEF、△BCF、△BEF

              2.如圖5,哪些是直角三角形,哪些不是,說說你的理由?

              圖4 圖5

              解答:④⑤是直角三角形,①②③⑥不是直角三角形

              意圖:

              第一題考查學生充分利用所學知識解決問題時,考慮問題要全面,不要漏解;第二題在于考查學生如何利用網格進行計算,從而解決問題。

              效果:

              學生在對所學知識有一定的熟悉度后,能夠快速做答并能簡要說明理由即可。注意防漏解及網格的應用。

              第六環節:交流小結

              內容:

              師生相互交流總結出:

              1.今天所學內容①會利用三角形三邊數量關系 判斷一個三角形是直角三角形;②滿足 的三個正整數,稱為勾股數;

              2.從今天所學內容及所作練習中總結出的經驗與方法:①數學是源于生活又服務于生活的;②數學結論的發現總是要經歷觀察、歸納、猜想和驗證的過程,同時遵循由特殊一般特殊的發展規律;③利用三角形三邊數量關系 判斷一個三角形是直角三角形時,當遇見數據較大時,要懂得將 作適當變形, 便于計算。

              意圖:

              鼓勵學生結合本節課的學習談自己的收獲和感想,體會到勾股定理及其逆定理的廣泛應用及它們的悠久歷史;敢于面對數學學習中的困難,并有獨立克服困難和運用知識解決問題的成功經驗,進一步體會數學的應用價值,發展運用數學的信心和能力,初步形成積極參與數學活動的意識。

              效果:

              學生暢所欲言自己的切身感受與實際收獲,總結出利用三角形三邊數量關系 判斷一個三角形是直角三角形從古至今在實際生活中的廣泛應用。

              第七環節:布置作業

              課本習題1.4第1,2,4題。

              五、教學反思:

              1.充分尊重教材,以勾股定理的逆向思維模式引入如果一個三角形的三邊長 ,滿足 ,是否能得到這個三角形是直角三角形的問題;充分引用教材中出現的例題和練習。

              2.注重引導學生積極參與實驗活動,從中體驗任何一個數學結論的發現總是要經歷觀察、歸納、猜想和驗證的過程,同時遵循由特殊一般特殊的發展規律。

              3.在利用今天所學知識解決實際問題時,引導學生善于對公式變形,便于簡便計算。

              4.注重對學習新知理解應用偏困難的學生的進一步關注。

              5.對于勾股定理的逆定理的論證可根據學生的實際情況做適當調整,不做要求。

              由于本班學生整體水平較高,因而本設計教學容量相對較大,教學中,應注意根據自己班級學生的狀況進行適當的刪減或調整。

              附:板書設計

              能得到直角三角形嗎

              情景引入 小試牛刀: 登高望遠

            【初中八年級數學教案得到直角三角形嗎】相關文章:

            初中八年級上冊數學教案09-26

            人教版初中八年級數學教案08-10

            數學教案設計:直角三角形全等的判定07-08

            初中數學教案06-14

            初中數學教案07-06

            人教版初中數學教案10-20

            初中數學教案實數10-03

            八年級數學直角三角形全等的判定教案10-29

            初中數學教案15篇10-06

            <delect id="sj01t"></delect>
            1. <em id="sj01t"><label id="sj01t"></label></em>
            2. <div id="sj01t"></div>
              1. <em id="sj01t"></em>

                      <div id="sj01t"></div>
                      黄色视频在线观看