<delect id="sj01t"></delect>
  1. <em id="sj01t"><label id="sj01t"></label></em>
  2. <div id="sj01t"></div>
    1. <em id="sj01t"></em>

            <div id="sj01t"></div>

            初二數學手抄報內容

            發布時間:2017-10-30 編輯:1041

              三角函數是數學中常見的一類關于角度的函數。也就是說以角度為自變量,角度對應任意兩邊的比值為因變量的函數叫三角函數,三角函數將直角三角形的內角和它的兩個邊長度的比值相關聯,也可以等價地用與單位圓有關的各種線段的長度來定義。三角函數在研究三角形和圓等幾何形狀的性質時有重要作用,也是研究周期性現象的基礎數學工具。在數學分析中,三角函數也被定義為無窮級限或特定微分方程的解,允許它們的取值擴展到任意實數值,甚至是復數值。

              常見的三角函數包括正弦函數、余弦函數和正切函數。在航海學、測繪學、工程學等其他學科中,還會用到如余切函數、正割函數、余割函數、正矢函數、半正矢函數等其他的三角函數。不同的三角函數之間的關系可以通過幾何直觀或者計算得出,稱為三角恒等式。

              三角函數一般用于計算三角形中未知長度的邊和未知的角度,在導航、工程學以及物理學方面都有廣泛的用途。另外,以三角函數為模版,可以定義一類相似的函數,叫做雙曲函數。常見的雙曲函數也被稱為雙曲正弦函數、雙曲余弦函數等等。三角函數(也叫做圓函數)是角的函數;它們在研究三角形和建模周期現象和許多其他應用中是很重要的。三角函數通常定義為包含這個角的直角三角形的兩個邊的比率,也可以等價的定義為單位圓上的各種線段的長度。更現代的定義把它們表達為無窮級數或特定微分方程的解,允許它們擴展到任意正數和負數值,甚至是復數值。

              初中三角函數公式:

              兩角和公式

              sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosA

              cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB

              tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)

              ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

              倍角公式

              tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctga

              cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

              半角公式

              sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)

              cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)

              tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))

              ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))

              和差化積

              2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)

              2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)

              sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

              tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosB

              ctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB

              某些數列前n項和

              1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n2

              2+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

              13+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

              正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圓半徑

              余弦定理b2=a2+c2-2accosB注:角B是邊a和邊c的夾角

            欄目推薦
            最新推薦
            熱門推薦
            <delect id="sj01t"></delect>
            1. <em id="sj01t"><label id="sj01t"></label></em>
            2. <div id="sj01t"></div>
              1. <em id="sj01t"></em>

                      <div id="sj01t"></div>
                      黄色视频在线观看