<delect id="sj01t"></delect>
  1. <em id="sj01t"><label id="sj01t"></label></em>
  2. <div id="sj01t"></div>
    1. <em id="sj01t"></em>

            <div id="sj01t"></div>
            小升初

            小升初數學應用題綜合訓練(二十八)及詳細答案講解

            時間:2025-04-28 18:01:52 小升初 我要投稿
            • 相關推薦

            小升初數學應用題綜合訓練(二十八)及詳細答案講解

              133.在一環形跑道上,甲從A點,乙從B點同時出發反向而行,6分鐘后兩人相遇,再過4分鐘甲到達B點,又過8分鐘兩人再次相遇.甲、乙環行一周各需要多少分鐘?

            小升初數學應用題綜合訓練(二十八)及詳細答案講解

              解:甲乙合行一圈需要8+4=12分鐘。乙行6分鐘的路程,甲只需4分鐘。

              所以乙行的12分鐘,甲需要12÷6×4=8分鐘,所以甲行一圈需要8+12=20分鐘。乙行一圈需要20÷4×6=30分鐘。

              134.甲、乙沿同一公路相向而行,甲的速度是乙的1.5倍.已知甲上午8點經過郵局,乙上午10點經過郵局,問甲、乙在中途何時相遇?

              解:我們把乙行1小時的路程看作1份,

              那么上午8時,甲乙相距10-8=2份。

              所以相遇時,乙行了2÷(1+1.5)=0.8份,0.8×60=48分鐘,

              所以在8點48分相遇。

              135.甲、乙兩人同時從山腳開始爬山,到達山頂后就立即下山.他們兩人下山的速度都是各自上山速度的2倍.甲到山頂時,乙距山頂還有400米,甲回到山腳時,乙剛好下到半山腰.求從山頂到山腳的距離.

              解:假設甲乙可以繼續上行,那么甲乙的速度比是(1+1÷2):(1+1/2÷2)=6:5

              所以當甲行到山頂時,乙就行了5/6,所以從山頂到山腳的距離是400÷(1-5/6)=2400米。

              136.一輛公共汽車載了一些乘客從起點出發,在第一站下車的乘客是車上總數(含一名司機和兩名售票員)的1/7,第二站下車的乘客是車上總人數的1/6,.......第六站下車的乘客是車上總人數的1/2,再開車是車上就剩下1名乘客了.已知途中沒有人上車,問從起點出發時,車上有多少名乘客?

              解:最后剩下1+1+2=4人。那么車上總人數是

              4÷(1-1/2)÷(1-1/3)÷……÷(1-1/6)÷(1-1/7)=28人

              那么,起點時車上乘客有28-3=25人。

              137.有三塊草地,面積分別是4畝、8畝、10畝.草地上的草一樣厚,而且長得一樣快,第一塊草地可供24頭牛吃6周,第二塊草地可供36頭牛吃12周.問第三塊草地可供50頭牛吃幾周?

              解法一:設每頭牛每周吃1份草。

              第一塊草地4畝可供24頭牛吃6周,

              說明每畝可供24÷4=6頭牛吃6周。

              第二塊草地8畝可共36頭牛吃12周,

              說明每畝草地可供36÷8=9/2頭牛吃12周。

              所以,每畝草地每周要長(9/2×12-6×6)÷(12-6)=3份

              所以,每畝原有草6×6-6×3=18份。

              因此,第三塊草地原有草18×10=180份,每周長3×10=30份。

              所以,第三塊草地可供50頭牛吃180÷(50-30)=9周

              解法二:設每頭牛每周吃1份草。我們把題目進行變形。

              有一塊1畝的草地,可供24÷4=6頭牛吃6周,供36÷8=9/2頭牛吃12周,那么可供50÷10=5頭牛吃多少周呢?

              所以,每周草會長(9/2×12-6×6)÷(12-6)=3份,

              原有草(6-3)×6=18份,

              那么就夠5頭牛吃18÷(5-3)=9周

              138.B地在A,C兩地之間.甲從B地到A地去,出發后1小時,乙從B地出發到C地,乙出發后1小時,丙突然想起要通知甲、乙一件重要的事情,于是從B地出發騎車去追趕甲和乙.已知甲和乙的速度相等,丙的速度是甲、乙速度的3倍,為使丙從B地出發到最終趕回B地所用的時間最少,丙應當先追甲再返回追乙,還是先追乙再返回追甲?

              我的思考如下:

              如果先追乙返回,時間是1÷(3-1)×2=1小時,

              再追甲后返回,時間是3÷(3-1)×2=3小時,

              共用去3+1=4小時

              如果先追甲返回,時間是2÷(3-1)×2=2小時,

              再追乙后返回,時間是3÷(3-1)×2=3小時,

              共用去2+3=5小時

              所以先追乙時間最少。故先追更后出發的。

            【小升初數學應用題綜合訓練(二十八)及詳細答案講解】相關文章:

            小升初數學應用題歸類講解及訓練及答案01-07

            小升初數學應用題經典綜合訓練及答案06-03

            小升初數學應用題綜合訓練及答案05-22

            小升初數學應用題綜合訓練及答案201704-02

            小升初數學應用題綜合訓練及答案分析06-08

            小升初數學應用題綜合訓練題及答案參考03-30

            小升初數學的綜合訓練應用題01-20

            小升初數學應用題的綜合訓練06-21

            小升初數學:應用題綜合訓練07-23

            <delect id="sj01t"></delect>
            1. <em id="sj01t"><label id="sj01t"></label></em>
            2. <div id="sj01t"></div>
              1. <em id="sj01t"></em>

                      <div id="sj01t"></div>
                      黄色视频在线观看