- 相關推薦
新版二年級數學下冊知識點復習總結
漫長的學習生涯中,說到知識點,大家是不是都習慣性的重視?知識點是知識中的最小單位,最具體的內容,有時候也叫“考點”。為了幫助大家更高效的學習,以下是小編幫大家整理的新版二年級數學下冊知識點復習總結,僅供參考,希望能夠幫助到大家。

新版二年級數學下冊知識點復習總結 1
第一單元 數據收集整理
1、用畫“正”字的方法收集數據。
2、用統計圖表來表示數據的情況。
3、根據統計圖表可以做出一些判斷。
4、數據收集---整理---分析表格。
第二單元 表內除法(一)
一、平均分
1、平均分的含義:把一些物品分成幾份,每份分得同樣多,叫平均分。
2、平均分的方法:
(1)把一些物品按指定的份數進行平均分時,可以一個一個的分,也可以幾個幾個的分,直到分完為止。
(2)把一些物品按每幾個一份平均分,分時可以想:這個數可以分成幾個這樣的一份。
二、除法
1、除法算式的含義:只要是平均分的過程,就可以用除法算式表示。
2、除法算式的讀法:通常按照從前往后順序讀,“÷”讀作除以,“=”讀作等于,其他讀法不變。
3、除法算式各部分的名稱:在除法算式中,除號前面的數就被除數,除號后面的數叫除數,所得的數叫商。
三、用2~6的乘法口訣求商
1、求商的方法:
(1)用平均分的.方法求商。
(2)用乘法算式求商。
(3)用乘法口訣求商。
2、用乘法口訣求商時,想除數和幾相乘的被除數。
四、解決問題
1、解決有關平均分問題的方法:
總數÷每份數=份數、總數÷份數=每份數、被除數=商×除數、
被除數=商×除數+余數、除數=被除數÷商、因數×因數=積、
一個因數=積÷另一個因數
2、用乘法和除法兩步計算解決實際問題的方法:
(1)所求問題要求求出總數,用乘法計算;
(2)所求問題要求求出份數或每份數,用除法計算。
第三單元 圖形的運動(一)
1、軸對稱圖形:沿一條直線對折,兩邊完全重合。對折后能夠完全重合的圖形是軸對稱圖形,折痕所在的直線叫對稱軸。
成軸對稱圖形的漢字:
一,二,三,四,六,八,十,大,干,豐,土,士,中,田,由,甲,申,口,日,曰,木,目,森,谷,林,畫,傘,王,人,非,菲,天,典,奠,旱,春,畝,目,山,單,殺,美,春,品,工,天,網,回,喜,莫,罪,夫,黑,里,亞。
2、平移:當物體水平方向或豎直方向運動,并且物體的方向不發生改變,這種運動是平移。只有形狀、大小、方向完全相同的圖形通過平移才能互相重合。
3、旋轉:物體繞著某一點或軸進行圓周運動的現象就是旋轉。
第四單元 表內除法(二)
一、用7、8、9的乘法口訣求商
求商方法:想“除數×( )=被除數”,再根據乘法口訣計算得商。
二、解決問題
求一個數里有幾個幾,和把一個數平均分成幾份,求每份是多少,都用除法計算。
第五單元 混合計算
一、混合計算
混合運算,先乘除,后加減,有括號的要先算括號里面的。只有加、減法或只有乘、除法,都要從左到右按順序計算。
二、解決兩步計算的實際問題
1、想好先解決什么問題,再解決什么問題。
2、可以畫圖幫助分析。
3、可以分布計算,也可以列綜合算式。
第六單元 有余數的除法
一、有余數的除法
1、有余數的除法的意義:在平均分一些物體時,有時會有剩余。
2、余數與除數的關系:在有余數的除法中,余數必須比除數小。最大的余數小于除數1,最小的余數是1。
3、筆算除法的計算方法:
(1)先寫除號“廠”
(2)被除數寫在除號里,除數寫在除號的左側。
(3)試商,商寫在被除數上面,并要對著被除數的個位。
(4)把商與除數的乘積寫在被除數的下面,相同數位要對齊。
(5)用被除數減去商與除數的乘積,如果沒有剩余,就表示能除盡。
4、有余數的除法的計算方法可以分四步進行:一商,二乘,三減,四比。
(1)商:即試商,想除數和幾相乘最接近被除數且小于被除數,那么商就是幾,寫在被除數的個位的上面。
(2)乘:把除數和商相乘,將得數寫在被除數下面。
(3)減:用被除數減去商與除數的乘積,所得的差寫在橫線的下面。
(4)比:將余數與除數比一比,余數必須必除數小。
二、解決問題
根據除法的意義,解決簡單的有余數的除法的問題,要根據實際情況,靈活處理余數。
新版二年級數學下冊知識點復習總結 2
第一,函數與導數。主要考查集合運算、函數的有關概念定義域、值域、解析式、函數的極限、連續、導數。
第二,平面向量與三角函數、三角變換及其應用。這一部分是高考的重點但不是難點,主要出一些基礎題或中檔題。
第三,數列及其應用。這部分是高考的重點而且是難點,主要出一些綜合題。
第四,不等式。主要考查不等式的求解和證明,而且很少單獨考查,主要是在解答題中比較大小。是高考的重點和難點。
第五,概率和統計。這部分和我們的生活聯系比較大,屬應用題。
第六,空間位置關系的定性與定量分析,主要是證明平行或垂直,求角和距離。
第七,解析幾何。是高考的難點,運算量大,一般含參數。
高考對數學基礎知識的考查,既全面又突出重點,扎實的數學基礎是成功解題的關鍵。針對數學高考強調對基礎知識與基本技能的考查我們一定要全面、系統地復習高中數學的基礎知識,正確理解基本概念,正確掌握定理、原理、法則、公式、并形成記憶,形成技能。以不變應萬變。
對數學思想和方法的考查是對數學知識在更高層次上的抽象和概括的考查,考查時與數學知識相結合。
對數學能力的考查,強調“以能力立意”,就是以數學知識為載體,從問題入手,把握學科的整體意義,用統一的數學觀點組織材料,側重體現對知識的理解和應用,尤其是綜合和靈活的應用,所有數學考試最終落在解題上。考綱對數學思維能力、運算能力、空間想象能力以及實踐能力和創新意識都提出了十分明確的考查要求,而解題訓練是提高能力的必要途徑,所以高考復習必須把解題訓練落到實處。訓練的'內容必須根據考綱的要求精心選題,始終緊扣基礎知識,多進行解題的回顧、總結,概括提煉基本思想、基本方法,形成對通性通法的認識,真正做到解一題,會一類。
在臨近高考的數學復習中,考生們更應該從三個層面上整體把握,同步推進。
1.知識層面
也就是對每個章節、每個知識點的再認識、再記憶、再應用。數學高考內容選修加必修,可歸納為12個章節,75個知識點細化為160個小知識點,而這些知識點又是縱橫交錯,互相關聯,是“你中有我,我中有你”的。考生們在清理這些知識點時,首先是點點必記,不可遺漏。再是建立相關聯的網絡,做到取自一點,連成一線,使之橫豎縱橫都逐個、逐級并網連遍,從而牢固記憶、靈活運用。
2.能力層面
從知識點的掌握到解題能力的形成,是綜合,更是飛躍,將知識點的內容轉化為高強的數學能力,這要通過大量練習,通過大腦思維、再思維,從而沉淀而得到數學思想的精華,就是數學解題能力。我們通常說的解題能力、計算能力、轉化問題的能力、閱讀理解題意的能力等等,都來自于千錘百煉的解題之中。
3.創新層面
數學解題要創新,首先是思想創新,我們稱之為“函數的思想”、“討論的方法”。函數是高中數學的主線,我們可以用函數的思想去分析一切數學問題,從初等數學到高等數學、從圖形問題到運算問題、從高散型到連續型、從指數與對數、從微分與積分等等,這一切都要突出函數的思想;另外,現在的高考題常常用增加題目中參數的方法來提高題目的難度,用于區別學生之間解題能力的差異。我們常常應對參數的策略點是消去參數,化未知為已知;或討論參數,分類找出參數的含義;或分離參數,將參數問題化成函數問題,使問題迎刃而解。這些,我稱之為解題創新之舉。
☆
還有一類數學解題中的創新,是代換,構造新函數新圖形等等,俗稱代換法、構造法,這里有更大的思維跨越,在解題的某一階段有時出現山窮水盡,無計可施時,用代換與構造,就會使思路豁然開朗、柳暗花明、思路順暢、解答優美,體現數學之美。常見的代換有變量代換,三角代換,整體代換;常用的構造有構造函數、構造圖形、構造數列、構造不等式、構造相關模型等等。
☆
總之,數學是一門規律性強、邏輯結構嚴密的學科,它有規律、有模型、有式子、有圖形,只要我們掌握了它的規律、看清了模型、了解了式子、記住了圖形,數學就會變成一門簡單而有趣的科學。這種戰略上的藐視與戰術上的重視,將會使考生們超常發揮,取得優異的成績。
高等數學學習方法
1.必須熟悉各種基本題型并掌握其解法。
課本上的每一道練習題,都是針對一個知識點出的,是最基本的題目,必須熟練掌握;課外的習題,也有許多基本題型,其運用方法較多,針對性也強,應該能夠迅速做出。許多綜合題只是若干個基本題的有機結合,基本題掌握了,不愁解不了它們。
2.在解題過程中有意識地注重題目所體現的出的思維方法,以形成正確的思維定勢。
數學是思維的世界,有著眾多思維的技巧,所以每道題在命題、解題過程中,都會反映出一定的思維方法,如果我們有意識地注重這些思維方法,時間長了頭腦中便形成了對每一類題型的“通用”解法,即正確的思維定勢,這時在解這一類的題目時就易如反掌了;同時,掌握了更多的思維方法,為做綜合題奠定了一定的基礎。
3.多做綜合題。
綜合題,由于用到的知識點較多,頗受命題人青睞。做綜合題也是檢驗自己學習成效的有力工具,通過做綜合題,可以知道自己的不足所在,彌補不足,使自己的數學水平不斷提高。“多做練習”要長期堅持,每天都要做幾道,時間長了才會有明顯的效果和較大的收獲。
高等數學學習技巧
初中數學的快速記憶法之歌訣記憶
就是把要記憶的數學知識編成歌謠、口訣或順口溜,從而便于記憶。比如,量角的方法,就可編出這樣幾句歌訣:“量角器放角上,中心對準頂點,零線對著一邊,另一邊看度數。”再如,小數點位置移動引起數的大小變化,“小數點請你跟我走,走路先要找準‘左’和‘右’;橫撇帶口是個you,擴大向you走走走;橫撇加個zuo,縮小向zuo走走走;十倍走一步百倍兩步走,數位不夠找‘0’拉拉鉤。”采用這種方法來記憶,學生不僅喜歡記,而且記得牢。
新版二年級數學下冊知識點復習總結 3
一、導數的應用
1.用導數研究函數的最值
確定函數在其確定的定義域內可導(通常為開區間),求出導函數在定義域內的零點,研究在零點左、右的函數的單調性,若左增,右減,則在該零點處,函數去極大值;若左邊減少,右邊增加,則該零點處函數取極小值。學習了如何用導數研究函數的最值之后,可以做一個有關導數和函數的綜合題來檢驗下學習成果。
2.生活中常見的函數優化問題
1)費用、成本最省問題
2)利潤、收益最大問題
3)面積、體積最(大)問題
二、推理與證明
1.歸納推理:歸納推理是高二數學的一個重點內容,其難點就是有部分結論得到一般結論,破解的方法是充分考慮部分結論提供的信息,從中發現一般規律;類比推理的難點是發現兩類對象的相似特征,由其中一類對象的特征得出另一類對象的特征,破解的方法是利用已經掌握的數學知識,分析兩類對象之間的關系,通過兩類對象已知的相似特征得出所需要的相似特征。
2.類比推理:由兩類對象具有某些類似特征和其中一類對象的某些已知特征,推出另一類對象也具有這些特征的推理稱為類比推理,簡而言之,類比推理是由特殊到特殊的推理。
三、不等式
對于含有參數的一元二次不等式解的討論
1)二次項系數:如果二次項系數含有字母,要分二次項系數是正數、零和負數三種情況進行討論。
2)不等式對應方程的根:如果一元二次不等式對應的方程的根能夠通過因式分解的方法求出來,則根據這兩個根的大小進行分類討論,這時,兩個根的`大小關系就是分類標準,如果一元二次不等式對應的方程根不能通過因式分解的方法求出來,則根據方程的判別式進行分類討論。通過不等式練習題能夠幫助你更加熟練的運用不等式的知識點,例如用放縮法證明不等式這種技巧以及利用均值不等式求最值的九種技巧這樣的解題思路需要再做題的過程中總結出來。
拓展閱讀
說明:以下內容為本文主關鍵詞的百科內容,一詞可能多意,僅作為參考閱讀內容,下載的文檔不包含此內容。每個關鍵詞后面會隨機推薦一個搜索引擎工具,方便用戶從多個垂直領域了解更多與本文相似的內容。
1、數學:數學,是研究數量、結構、變化、空間以及信息等概念的一門學科。數學是人類對事物的抽象結構與模式進行嚴格描述的一種通用手段,可以應用于現實世界的任何問題,所有的數學對象本質上都是人為定義的。從這個意義上,數學屬于形式科學,而不是自然科學。不同的數學家和哲學家對數學的確切范圍和定義有一系列的看法。在人類歷史發展和社會生活中,數學發揮著不可替代的作用,同時也是學習和研究現代科學技術必不可少的基本工具。數學史數理邏輯與數學基礎a:演繹邏輯學(也稱符號邏輯學),b:證明論(也稱元數學),
c:遞歸論,
d:模型論,
e:公理集合論,
f:數學基礎,
g:數理邏輯與數學基礎其他學科。
數論
a:初等數論,
b:解析數論,
c:代數數論,
d:超越數論,
e:丟番圖逼近,
f:數的幾何,
g:概率數論,
h:計算數論,
i:數論其他學科。
代數學
a:線性代數,
b:群論,
c:域論,
d:李群,
e:李代數,
f:Kac-Moody代數,
g:環論(包括交換環與交換代數。
2、類比推理:類比推理亦稱“類推”。推理的一種形式。根據兩個對象在某些屬性上相同或相似,通過比較而推斷出它們在其他屬性上也相同的推理過程。它是從觀察個別現象開始的,因而近似歸納推理。但它又不是由特殊到一般,而是由特殊到特殊,因而又不同于歸納推理。分完全類推和不完全類推兩種形式。完全類推是兩個或兩類事物在進行比較的方面完全相同時的類推;不完全類推是兩個或兩類事物在進行比較的方面不完全相同時的類推。這是科學研究中常用的方法之一。它是從特殊推向特殊的推理。類比推理是根據兩個或兩類對象有部分屬性相同,從而推出它們的其他屬性也相同的推理。簡稱類推、類比。以關于兩個事物某些屬性相同的判斷為前提,推出兩個事物的其他屬性相同的結論的推理。如聲和光有不少屬性相同--直線傳播,有反射、折射和干擾等現象;由此推出:既然聲有波動性質,光也有波動性質。這就是類比推理。類比推理具有或然性。如果前提中確認的共同屬性很少,而且共同屬性和推出來的屬性沒有什么關系,這樣的類比推。
3、總結:總結是事后對某一階段的工作或某項工作的完成情況,包括取得的成績、存在的問題及得到的經驗和教訓加以回顧和分析,為今后的工作提供幫助和借鑒的一種書面材料。
(1)自身性。總結都是以第一人稱,從自身出發。它是單位或個人自身實踐活動的反映,其內容行文來自自身實踐,其結論也為指導今后自身實踐。
(2)指導性。總結以回顧思考的方式對自身以往實踐做理性認識,找出事物本質和發展規律,取得經驗,避免失誤,以指導未來工作。
(3)理論性。總結是理論的升華,是對前一階段工作的經驗、教訓的分析研究,借此上升到理論的高度,并從中提煉出有規律性的東西,從而提高認識,以正確的認識來把握客觀事物,更好地指導今后的實際工作。
(4)客觀性。總結是對實際工作再認識的過程,是對前一階段工作的回顧。總結的內容必須要完全忠于自身的客觀實踐,其材料必須以客觀事實為依據,不允許東拼西湊,要真實、客觀地分析情況、總結經驗。
(1)綜合性總結。對某一單位、某一部門工作進行全面性總結,既反。
4、因式分解:把一個多項式在一個范圍(如實數范圍內分解,即所有項均為實數)化為幾個整式的積的形式,這種式子變形叫做這個多項式的因式分解,也叫作把這個多項式分解因式。把一個多項式在一個范圍化為幾個整式的積的形式,這種式子變形叫做這個多項式的因式分解,也叫作把這個多項式分解因式。因式分解是中學數學中最重要的恒等變形之一,它被廣泛地應用于初等數學之中,在數學求根作圖、解一元二次方程方面也有很廣泛的應用,是解決許多數學問題的有力工具。因式分解方法靈活,技巧性強。學習這些方法與技巧,不僅是掌握因式分解內容所需的,而且對于培養解題技能、發展思維能力都有著十分獨特的作用。學習它,既可以復習整式的四則運算,又為學習分式打好基礎;學好它,既可以培養學生的觀察、思維發展性、運算能力,又可以提高綜合分析和解決問題的能力。基本結論:分解因式為整式乘法的逆過程。高級結論:在高等代數上,因式分解有一些重要結論,在初等代數層面上證明很困難,但是理解很容易。
新版二年級數學下冊知識點復習總結 4
第一章分式
1分式及其基本性質
分式的分子和分母同時乘以(或除以)一個不等于零的整式,分式的只不變
2分式的運算
(1)分式的乘除乘法法則:分式乘以分式,用分子的積作為積的分子,分母的積作為積的分母除法法則:分式除以分式,把除式的分子、分母顛倒位置后,與被除式相乘。
(2)分式的加減加減法法則:同分母分式相加減,分母不變,把分子相加減;異分母分式相加減,先通分,變為同分母的.分式,再加減
3整數指數冪的加減乘除法
4分式方程及其解法
第二章反比例函數
1反比例函數的表達式、圖像、性質
圖像:雙曲線
表達式:y=k/x(k不為0)
性質:兩支的增減性相同;
2反比例函數在實際問題中的應用
第三章勾股定理
1勾股定理:直角三角形的兩個直角邊的平方和等于斜邊的平方
2勾股定理的逆定理:如果一個三角形中,有兩個邊的平方和等于第三條邊的平方,那么這個三角形是直角三角形
第四章四邊形
1平行四邊形
性質:對邊相等;對角相等;對角線互相平分。
判定:兩組對邊分別相等的四邊形是平行四邊形;
兩組對角分別相等的四邊形是平行四邊形;
對角線互相平分的四邊形是平行四邊形;
一組對邊平行而且相等的四邊形是平行四邊形。
推論:三角形的中位線平行第三邊,并且等于第三邊的一半。
2特殊的平行四邊形:矩形、菱形、正方形
(1)矩形
性質:矩形的四個角都是直角;
矩形的對角線相等;
矩形具有平行四邊形的所有性質
判定:有一個角是直角的平行四邊形是矩形;對角線相等的平行四邊形是矩形;
推論:直角三角形斜邊的中線等于斜邊的一半。
(2)菱形性質:菱形的四條邊都相等;菱形的對角線互相垂直,并且每一條對角線平分一組對角;菱形具有平行四邊形的一切性質
判定:有一組鄰邊相等的平行四邊形是菱形;對角線互相垂直的平行四邊形是菱形;四邊相等的四邊形是菱形。
(3)正方形:既是一種特殊的矩形,又是一種特殊的菱形,所以它具有矩形和菱形的所有性質。
3梯形:直角梯形和等腰梯形
等腰梯形:等腰梯形同一底邊上的兩個角相等;等腰梯形的兩條對角線相等;同一個底上的兩個角相等的梯形是等腰梯形。
第五章數據的分析
加權平均數、中位數、眾數、極差、方差
新版二年級數學下冊知識點復習總結 5
銳角三角函數公式
sin α=∠α的對邊 / 斜邊
cos α=∠α的'鄰邊 / 斜邊
tan α=∠α的對邊 / ∠α的鄰邊
cot α=∠α的鄰邊 / ∠α的對邊
倍角公式
Sin2A=2SinA?CosA
Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1
tan2A=(2tanA)/(1-tanA^2)
(注:SinA^2 是sinA的平方 sin2(A) )
三倍角公式
sin3α=4sinα·sin(π/3+α)sin(π/3-α)
cos3α=4cosα·cos(π/3+α)cos(π/3-α)
tan3a = tan a · tan(π/3+a)· tan(π/3-a)
三倍角公式推導
sin3a
=sin(2a+a)
=sin2acosa+cos2asina(1)特殊角三角函數值
sin0=0
sin30=0.5
sin45=0.7071 二分之根號2
sin60=0.8660 二分之根號3
sin90=1
cos0=1
cos30=0.866025404 二分之根號3
cos45=0.707106781 二分之根號2
cos60=0.5
cos90=0
tan0=0
tan30=0.577350269 三分之根號3
tan45=1
tan60=1.732050808 根號3
tan90=無
cot0=無
cot30=1.732050808 根號3
cot45=1
cot60=0.577350269 三分之根號3
cot90=0
新版二年級數學下冊知識點復習總結 6
在直角三角形中
sin@代表對邊比斜邊
cos@代表鄰邊比斜邊
tan@代表對邊比鄰邊
cot@代表鄰邊比對邊
同角三角函數的基本關系式
倒數關系: 商的關系: 平方關系:
tan cot=1
sin csc=1
cos sec=1 sin/cos=tan=sec/csc
cos/sin=cot=csc/sec sin2+cos2=1
1+tan2=sec2
1+cot2=csc2
誘導公式
sin(-)=-sin
cos(-)=cos tan(-)=-tan
cot(-)=-cot
sin(/2-)=cos
cos(/2-)=sin
tan(/2-)=cot
cot(/2-)=tan
sin(/2+)=cos
cos(/2+)=-sin
tan(/2+)=-cot
cot(/2+)=-tan
sin()=sin
cos()=-cos
tan()=-tan
cot()=-cot
sin()=-sin
cos()=-cos
tan()=tan
cot()=cot
sin(3/2-)=-cos
cos(3/2-)=-sin
tan(3/2-)=cot
cot(3/2-)=tan
sin(3/2+)=-cos
cos(3/2+)=sin
tan(3/2+)=-cot
cot(3/2+)=-tan
sin(2)=-sin
cos(2)=cos
tan(2)=-tan
cot(2)=-cot
sin(2k)=sin
cos(2k)=cos
tan(2k)=tan
cot(2k)=cot
(其中kZ)
兩角和與差的三角函數公式 萬能公式
sin(+)=sincos+cossin
sin(-)=sincos-cossin
cos(+)=coscos-sinsin
cos(-)=coscos+sinsin
tan+tan
tan(+)=------
1-tan tan
tan-tan
tan(-)=------
1+tan tan
2tan(/2)
sin=------
1+tan2(/2)
1-tan2(/2)
cos=------
1+tan2(/2)
2tan(/2)
tan=------
1-tan2(/2)
半角的正弦、余弦和正切公式 三角函數的降冪公式
二倍角的正弦、余弦和正切公式 三倍角的正弦、余弦和正切公式
sin2=2sincos
cos2=cos2-sin2=2cos2-1=1-2sin2
2tan
tan2=-----
1-tan2
sin3=3sin-4sin3
cos3=4cos3-3cos
3tan-tan3
tan3=------
1-3tan2
三角函數的和差化積公式 三角函數的積化和差公式
+ -
sin+sin=2sin---cos---
2 2
+ -
sin-sin=2cos---sin---
2 2
+ -
cos+cos=2cos---cos---
2 2
+ -
cos-cos=-2sin---sin---
2 2 1
sin cos=-[sin(+)+sin(-)]
2
1
cos sin=-[sin(+)-sin(-)]
2
1
cos cos=-[cos(+)+cos(-)]
2
1
sin sin=- -[cos(+)-cos(-)]
2
化asin bcos為一個角的一個三角函數的`形式(輔助角的三角函數的公式)
【新版二年級數學下冊知識點復習總結】相關文章:
小學二年級下冊數學知識點復習01-13
二年級數學下冊知識點總結05-10
二年級數學下冊知識點總結06-18
最新五年級下冊數學復習知識點07-11
人教版五年級數學下冊知識點復習01-12
九年級數學下冊知識點復習資料04-03
小學五年級數學下冊復習教學知識點歸納總結01-20
新版PEP三年級英語下冊復習知識點歸納02-25
關于小升初數學知識點復習07-30