<delect id="sj01t"></delect>
  1. <em id="sj01t"><label id="sj01t"></label></em>
  2. <div id="sj01t"></div>
    1. <em id="sj01t"></em>

            <div id="sj01t"></div>
            數學試題

            小學六年級數學總復習資料

            時間:2025-02-23 23:30:09 數學試題 我要投稿

            2017年小學六年級數學總復習資料匯總(西師版)

              一、數的意義:

            2017年小學六年級數學總復習資料匯總(西師版)

              1、整數:像—3、—2、—1、0、1、2、3……這樣的數統稱為整數。整數的個數是無限的。沒有最小的整數,也沒有最大的整數,自然數是整數的一部分。

              2、自然數:用來表示物體個數的數。像1、2、3、4、5……叫做自然數。一個物體也沒有用0表示。自然數的個數是無限的,最小的自然數是0,沒有最大的自然數。

              3、小數:把整數“1”平均分成10份、100份、1000份……這樣的一分或幾份的數是十分之幾、百分之幾、千分之幾……可以用小數表示。

              4、小數的分類:

              (1)純小數和帶小數:整數部分是o的小數叫做純小數,整數部分不是o的小數叫做帶小數。

              (2)有限小數和無限小數:小數部分的位數是有限的小數叫做有限小數;小數部分的位數是無限的小數叫做無限小數。

              (3)循環小數:一個小數,從小數部分的某一位起一個數字或幾個數字依次不斷地重復出現,這樣的小數叫做循環小數。

              (4)循環節:一個循環小數的小數部分,依次不斷重復出現的數字叫做這個小數的循環節。

              (5)純循環小數和混循環小數:循環節從小數部分第一位開始的,叫做純循環小數;循環節不是從第一位開始的,叫做混循環小數。

              5、計數單位:個、十、百、千、以及十分之一、百分之一、千分之一?????都是計數單位。

              6、數位:各個計數單位所占的位置叫做數位。

              7、十進制計數法:“十進制計數法”是世界各國最常用的一種計數方法。它的特點是每相鄰的兩個計數單位之間的進率都是“十”就是10個較低的計數單位可以進成一個較高的計數單位(既通常說的“逢十進一”), 這種以“十”為基礎進位的計數方法,叫做十進制計數法。

              8、整數和小數數位順序表:

              9、分數:把單位“1”平均分成若干份,表示這樣的一份或幾份的數叫做分數。(1)分數單位:把單位“1”平均分成若干份,表示這樣的一份的數就是這個分數的分數單位。

              (2)分數的分類:真分數:分子比分母小的分數叫做真分數。真分數小于1。假分數:分子比分母大或者分子等于分母的分數叫做假分數,假分數≧1

              10、百分數:表示一個數是另一個數的百分之幾的數叫做百分數,百分數也叫百分率或百分比。百分數的分數單位是1%。百分數的分母是100。

              11、分數和百分數的關系:分數既可以表示一個數(后面可加數量單位);也可以表示兩個數的比(兩數之間的關系)。而百分數只表示一個數占另一個數的百分比(兩數之間的關系),不能表示具體的數。因此百分數不帶單位。

              12、正數和負數:像1/3、+2、0.5、+4.5…這樣的數叫做正數;像―1/2、―5.5、―6…這樣的數叫做負數。

              (不能認為:一個數的前面加上“+”號這個數就是正數,也不能認為:一個數的前面加上“—”號這個數就是負數)。比如:“—a”這個數我們就不能判斷是負數,因為a可能:是正數、是負數、0都有可能;所以我們無法判斷。

              自然數是等于或大于0的整數,也可以說是不小于0的整數,既是非負整數。0既不是正數也不是負數。

              二、數的讀法和寫法。

              1、讀法:從高位到低位,一級一級的往下讀,每一級末尾的0都不讀出來,其他數位的連續的幾個0都只讀一個。

              2、寫法:從高位到低位,一級一級的往下寫,哪一個數位上一個單位也沒有,就在那個數為上寫0。

              (一)、小數的讀法與寫法:

              讀法:通常是整數部分按整數的讀法去讀,小數點讀作“點”,小數部分按從左向右的順序只讀出數字。

              寫法:寫小數時,整數部分按整數部分的寫法去寫,小數點寫在個位的右下角,小數部分按從左向右的順序

              依次寫出每一個數位上的數字。

              (二)、分數的讀法與寫法:

              讀法:讀分數時,先讀分數的分母,再讀“分之”最后讀分子。讀帶分數時,要先讀整數部分,再讀“又”字,最后按分數部分的讀法讀分數部分。(分數線的讀法:“分之”),

              寫法:寫分數時,要先寫分數線,再寫分母,最后寫分子,寫帶分數時,要先寫整數部分,再寫分數部分,整數部分要對其分數線,二者要緊湊。

              (三)、百分數的讀法與寫法:

              讀法:百分數的讀法與分數相同。

              寫法:百分數通常不寫成分數形式,而是在原來的分子后面加上百分號“%”來表示。寫百分數時,先寫分子,再寫百分號。

              (四)、數的大小比較:

              1、整數的大小比較:比較兩個整數的大小,首先要看它們的位數,如果位數不相同,那么位數多的那個數就大;如果位數相同,就先從高位比起,相同數位上的數大的那個數就大;

              2、小數的大小比較:先比較它們的整數部分,整數部分大的那個數就大;整數部分相同的,十分位上數大的那個數就大;十分位上的數字相同,百分位上的數大那個數就大。…以此類推。

              3、分數的大小比較:分母相同的分數,分子大的那個分數就大;(因為分母相同,分數單位就相等,分子大的就意味著含有的分數單位多。);分子相同的分數相比較,分母小的那個分數大。(分子相同含有的分數單位數相同,分母小的分數分數單位就大)分子、分母都不同的分數相比較,先通分,轉化成同分母分數后,再比較大小。

              4、正數和負數的大小比較:負數都比正數小。0大于一切負數,0小于一切正數。

              5、兩個負數相比較:如果a>b(a、b均為正數),則-a<-b。就是在不看負數符號的情況下:數大的那個數反而小。

              三、數的性質:

              1、分數的性質:分子和分母同時乘上或者除以相同的數(0除外),分數的大小不變。(注意:分數的分單位有變化,分子、分母都有變化)

              2、約分和通分:把一個分數化成和原分數相等的,且分子分母都比原分數小的的分數叫做約分;把異分母分數分別化成和原分數相等的同分母分數,叫做通分。

              3、最簡分數:分子和分母只有公因數1的分數叫做最簡分數。

              4、小數的基本性質:小數的末尾添上或去掉0,小數的大小不變。(注意:小數的位數有變化,精確度有變化。)

              5、小數點的位置移動引起小數的大小變化規律:小數點每向右移動一位、兩位、三位,這個數就擴大到原來的10倍、100倍、1000倍???;小數點每向左移動一位、兩位、三位,該數就縮小到原數的1/10、1/100、1/1000???。

              四、數的改寫:

              1、把多位數改寫成以”萬“或者以”億”單位的數。

              (1)直接改寫:把多位數改寫成以”萬“或者以”億”單位的數,先把原來的小數點向左移動4位或者8位,再在數后面加上“萬”或“億”字,中間用“=”連接。

              (2)省略尾數改寫成近似數:先用“四舍五入法”省略萬位或者億位后面的尾數,再在這個數的后面寫上“萬”字或者“億”字。得出的是近似數,中間用“≈”連接。

              2、求小數的近似數:根據要求,要把小數保留到哪一位,就把這一位后面的尾數按照“四舍五入法”省略,中間用“≈”。

              3、小數、分數、百分數的互化:

              小數化成分數方法:先看小數點后面有幾位小數,就在1的后面添上幾個0做分母,原來的小數去掉小數點后做分子。能約分的要約成最簡分數。

              分數化成小數方法:用分子除以分母。

              小數化成百分數的方法:把小數的小數點向右移動兩位,(位數不足時用0補足)同時在后面添上“%”。

              百分數化成小數的方法:把百分數的分子的小數點向左移動兩位,同時去掉后面的“%”。

              百分數化成分數的方法:先把百分數的改寫成分母是100的分數,然后約成最簡分數。

              分數化成百分數的方法:先把分數化成小數,在把小數化成百分數。

              4、判斷一個分數能否化成有限小數的方法:一個最簡分數,如果分母中除了含有質因數2和5以外,不含有其它質因數, 這個分數就能化成有限小數;如果分母中含有了2和5以外的其他質因數,這個分數就不能化成有限小數。

              五、數的整除:

              1、整除:整數a除以整數b(b≠0),除得的商正好是整數且沒有余數,我們就說數a能被數b整除。(也可以說b能整除a)。

              2、因數和倍數:如果a×b=c(a、b、c都是非0整數)那么a、b就叫做c的因數,c就叫做a、b的倍數。

              一個數的因數的個數是有限的,其中最小的因數是1,最大的因數是它本身。

              一個數的倍數的個數是無限的,其中最小的倍數是它本身,沒有最大的倍數。

              3、公因數和最大公因數:幾個數的公有的因數,叫做這幾個數的公因數;其中最大的一個叫做這幾個數的最大公因數。

              4、公倍數和最小公倍數:幾個數公有的倍數,叫做這幾個數的公倍數;其中最小的那個數叫做這幾個數的最小公倍數。。

              5、求兩個數的最大公因數的方法:一般采用列舉法,就是把兩個數的因數一一列舉出來,然后找出兩個數的公因數,其中最大的那個數就是這兩個數最大公因數。也可以采用短除法。

              短除法求最大公因數的方法:把兩個數寫在 的橫線上,先用著這兩個數的公有質因數做除數,如果兩個數的商是互質數,除數就是這兩個數的所得的商就是這兩個數的最大公因數。如果兩個數的商不互質,就按照上面的方法繼續除,直到兩個數的商最后是互質數為止,然后把所有的除數連乘起來,所得的積就是這兩個數的最大公因數。

              6、求兩個數的最小公倍數的方法:一般也采用列舉法,把兩個數的倍數數根據需要按從小到大的順序列舉一部分,然后找出兩個數的公有的倍數,其中最小的那個公倍數就是這兩個數的最小公倍數。也可以采用短除法。

              短除法求最小公倍數的方法:把兩個數寫在 的橫線上,先用著這兩個數的公有質因數做除數,所 得的商寫在橫線下的相對應的位置,如果兩個數的商是互質數,就把除數和最后的兩個商連乘起來,所得的積就是這兩個數的最小公倍數;如果兩個數的商不互質,就按照上面的方法繼續除,直到兩個數的商最后是互質數為止,然后把所有的除數和最后所得商連乘起來,所得的積就是這兩個數的最小公倍數。

              7、求兩個數的最大公因數和最小公倍數的特殊方法:

              如果兩個數中,較大數是較小數的倍數,較小數就是較大數的因數,則較大數是這兩個數的最小公倍數;較小數是這兩個數的最大公因數。

              如果兩個數是互質數,則它們的最大公因數是1,最小公倍數是這兩個數的乘積。

              8、奇數和偶數、在自然數中,是2的倍數的數叫做偶數,不是2的倍數的數叫做奇數,最小的偶數是0,最小的奇數是1。

              9、2、5、3的倍數的特征。

              (1)2的倍數的特征:個位上是0、2、4、6、8的數都是2的倍數。

              (2)5的倍數的特征:個位上是0或5的數都是5的倍數。

              (3)3的倍數特征:一個數各個數位上的數字的和是3的倍數,這個數就是3的倍數。

              10、質數和合數:一個數,如果只有1和它本身兩個因數,這樣的數叫做質數(或素數);一個數,如果除了1和它本身還有別的因數,這樣的數叫做合數。質數有且只有兩個因數,合數至少有三個因數。 1既不是質數也不數合數。

              11、質因數與分解質因數:每個合數都可以寫成幾個質數相乘的形式,其中每個質數都是這個合數的質因數。把一個合數用質數相乘的形式表示出來,就是分解質因數。

              12、分解質因數的方法:把一個合數分解質因數,通常用短除法,分解質因數時,先用這個合數的質因數(通常用最小的開始)去除,得出的商如果是質數,就把除數和商寫成相乘的形式;得出的商如果是合數,就照上面的方法繼續下去,直到得出商是質數為止,然后把各個除數和最后的商寫成連乘的形式。


            更多六年級數學試題分享:

            1.小學六年級的數學考試試題競賽

            2.2017第十五屆走美杯初賽六年級備考題

            3.小學六年級數學期中測試題卷

            4.六年級數學復習訓練題

            5.小學六年級數學測試題兩則

            6.六年級數學畢業模擬考試卷

            7.小學六年級基礎訓練題及答案

            8.蘇教版六年級數學畢業考試卷

            9.人教版六年級數學畢業素質測試試卷

            10.蘇教版六年級數學畢業招生試題

              13、大于0的自然數的分類方法:(1)根據是否是2的倍數,自然數可分為:奇數和偶數。(2)根據所含因數的個數,自然數可分為:1、質數、合數。

              六、數的運算:

              1、加法的意義:把兩個數(或幾個數)合并成一個數的運算。

              2、減法的意義:已知兩個數的和與其中的一個加數,求另一個加數的運算。

              3、乘法的意義:(1)一個數乘整數,就是求幾個相同加數和的簡便運算。

              (2)一個數乘小數,可以看作是求這個數的十分之幾,百分之幾???是多少?

              (3)一個數乘分數,就是求這個數的幾分之幾是多少。

              4、除法的意義:以這兩個數的積和其中的一個因數,求另一個因數的運算。

              5、計算方法:

              1、加法的計算方法。

              (1)整數和小數:相同數位對齊,從低位加起,哪一位上的數相加滿十,要向前一位進1。(2)分數:同分母分數相加,分母不變只把分子相加。異分母分數相加,先通分,再按照同分母分數加法法則進行計算。

              2、減法的計算方法:

              (1)整數和小數:相同數位對齊,從低位減起,哪一位上的數不夠減,從前一位退1,在本位上加10后再減。

              (2)分數:同分母分數相減,分母不變,只把分子相減。(分子之差做分子)異分母分數相減,先通分,再按照同分母分數減法法則進行計算。

              3、乘法的計算方法:

              ⑴整數乘法的計算方法:相同數位對齊,從末尾乘起,用第二個因數的每一位上的數去乘第一個因數,用哪一位的數去乘,乘得的積的末尾就要和那一位對齊,最后把每次乘得的積的相加。

              ⑵小數乘法的計算方法:計算小數乘法,末尾對齊,先按照整數乘法的計算方法算出積,再看因數中一共有幾位小數, 就從積的末尾起向左數出幾位,點上小數點。

              ⑶分數乘法的計算方法:分數乘分數,用分子相乘的積作分子,分母相乘的積作分母(能約分的要先約分)。

              ⑷除法的計算方法:整數除法的計算方法:從被除數的高位除起,除的時候,除數有幾位數就先看被除數的前幾位,如果前幾位不夠除,再多看一位,除到被除數的哪一位,就把商寫在哪一位的上面,每次除得余數必須比除數小。

              ⑸小數除法的計算方法:除數是整數的小數除法,要按照整數除法的計算方法去除,商的小數點要和被除數的小數點對齊。如果除到被除數的末尾仍有余數,就在余數的末尾添上0繼續除。除數是小數的除法:先移動除數的小數點,使它變為整數,除數的小數點向右移動幾位,被除數的小數點也要向右移動相同位數(位數不夠時,在被除數的末尾用0補足),然后按除數是整數的小數除法的計算方法進行計算。

              ⑹分數除法的計算方法:甲數除以乙數(0除外)等于甲數乘乙數的倒數。

              倒數:乘積為1的兩個數互為倒數。

              七、四則運算的驗算方法:

              1、加法的驗算方法(1)用加法驗算:調換兩個加數的位置再加一遍。

              (2)用減法驗算:和—一個加數=另一個加數。

              2、減法的驗算方法:(1)用加法驗算:差+減數=被減數。

              (2)用減法驗算:被減數—差=減數。

              3、乘法的驗算方法:(1)用乘法驗算:調換兩個因數的位置再稱一遍。

              (2)用除法驗算:積÷一個因數=另一個因數。

              4、除法的驗算方法:(1)用乘法驗算:如果沒有余數,商×除數=被除數,如果有余數,商×除數+余數=被除數。

              (2)用除法驗算:被除數÷商=除數 或(被除數-余數)÷商=除數

              八、0與1在四則運算中特性:

              a+0=a a×0=0 0÷a=0 a-0=a a×1=a

              a-a=0 a÷1=a 1÷a=1/a (在上面算式中a作除數時a≠0)

              九、運算定律:

              1、加法的交換律:a+b=b+a 2、加法的結合律:a+b+c=a+(b+c)

              3、乘法的交換律:a×b=b×a 4、乘法的結合律:a×b×c=a×(b×c)

              5、乘法的分配率:(a+b)×c = a×c+b×c

              十、運算性質:

              1、減法的運算性質:a-(b+c)=a-b-c a-(b-c)=a-b+c

              2、除法的運算性質(除數不為0):a ÷(b×c)=a÷b ÷c

              a÷(b÷c)=a÷b×c (a+b)÷c=a÷c+b÷c (a-b)÷c=a÷c-b÷c

              十一、運算順序:

              1、加法和減法叫做一級運算,乘法和除法叫做第二級運算。

              2、在一個沒有括號的算式里,如果只含有同一級運算,要從左往右依次計算;如果含有兩級運算,要先算第二級運算,后算第一級運算。

              3、在一個有括號的算式里,要先算小括號里面的,再算中括號里面的。

              十二、解決問題:

              1、復合應用題:用兩步或兩步以上計算來解答的應用題。分析此問題,一般采用分析法或綜合法。

              分析法:從要求問題入手,逐步找出解答問題所需要的信息,求得問題的解決。

              綜合法:從已知條件入手,利用已知條件看能解決什么問題,從而求得問題的解決。

              2、解決問題的一般步驟:首先理解題意,找出已知條件何所求問題;其次。分析數量關系,確定先 算什么,再算什么,最后算什么;再次,確定每一步該怎樣算,列出算式,算出得數;最后進行檢驗,寫出答案。

              3、幾種常見的.數量關系:

              (1)路程=速度×時間 (2)總價=單價×數量 (3)工作總量=工效×時間

              (4)總產量=單產量×數量(5)收入--支出=結余(6)利息=本金×利息×時間

              十三、式與方程:

              1、用字母表示數的意義:用字母表示數是代數的基本特點。既簡單明了,又能表達數量關系的一般規律。

              2、用字母代表數的作用:

              (1)用字母代表任何數。(2)用字母表示常見的數量關系。(3)用字母表示運算定律。(4)用字母表示計算公式。

              3、(1)數字與字母、字母與字母相乘時,乘號可以簡寫成“?”或者省略不寫。數與數相乘,乘號不能省略。

              4、等式與方程:表示相等關系的式子叫做等式。含有未知數的等式叫做方程。

              方程的解:使方程左右兩邊相等的未知數的值叫做方程的解。

              解方程:求方程中未知數的過程叫做解方程。

              5、等式的性質:(1)等式兩邊都加上或減去同一個數,左右兩邊仍然相等。

              (2)等式兩邊都乘上(或除以)同一個不為零的數,左右兩邊仍然相等。

              (3)根據等式的性質可以解方程。

              6、列方程解應用題的步驟:(1)找出未知數并用X表示。

              (2)找出應用題中數量間的相等關系,并更具等量關系列出方程。

              (3)解方程,求未知數的值。

              (4)檢驗寫答語。

              十四、常見的計量單位及其進率:

              (一)意義:(1)物體的多少、長短、大小、輕重、快慢等。這些可以測定的客觀事物的特征叫做量。(2)把一個要測定的量同一個作為標準的量相比較叫做計量。用來作為計量標準的量叫做計量單位。

              (二)常用的計量單位及其進率。

              (1)貨幣單位及其進率:1元=10角 1角=10分

              (2)長度單位及其進率: 1千米=1000米 1米=10分米=100厘米

              1分米=10厘米 1厘米=10毫米

              (3)面積單位及其進率:

              1平方千米=1000000平方米 1平方千米=100公頃

              1公頃=10000平方米 1平方米=100平方分米

              1平方分米=100平方厘米 1平方厘米=1000平方毫米

              質量單位及其進率: 1噸=1000千克 1千克=1000克

              時間單位及其進率:(1)1年有12個月 平年有365天,閏年有366天。

              (2)1、3、5、7、8、10、12月是大月,每月31天;4、6、9、11月是小月,每月有30天;二月既不是大約也不是小月,平年二月28天,閏年二月有29天。(3)按四個季度分,1、2、3月份屬第一季度,4、5、6月份是第二季度,7、8、9月份是第三季度,10、11、12是第四季度。

              (4)每個月分上、中、下三旬,上旬、中旬各有10天,下旬的天數大月11天,小月有10天。閏年二月下旬9天,平年8天

              (5)1星期=7日 1日=24小時 1小時=60分 1分=60秒 1世紀=100年

              (6)平年閏年判斷的方法:公歷年份能被4整除,整百,整千年份能整除400的是閏年,反之是平年。

              (三)計量單位的改寫:1、名數的意義:計量的結果,要用數表示,并且還要帶上單位的名稱,通常把他們合起來叫做名數。只帶一個名稱的叫單名數;帶兩個或兩個以上單位名稱的叫復名數。如:2千克50克,8平方米20平方分米5平方厘米。

              2、名數的改寫:把高級單位的名數改寫成低級單位的名數用進率去乘,把低級單位的名數改寫成高級單位名數用進率去除。當進率是10、100、1000???是也可以把小數點向右(左) 移動一位,兩位、三位???。位數不足時,用零補足。

              十五、比和比例:

              (1)比和比例的意義、各部分名稱、基本性質。

              ( 2)比和分數、除法的關系

              (3)求比值和化簡比

              意義 方法 結果

              求比值 前項除以后項所得的商 根據比值的意義,用前項除以后項 一個商(整數、小數或分數)

              化簡比 把兩個數的比化成最簡單的整數比 比的前項和后項都乘或除以一個相同的數(0除外);也可以根據求比值的方法,用前項除以后項。


            更多六年級數學試題分享:

            1.小學六年級的數學考試試題競賽

            2.2017第十五屆走美杯初賽六年級備考題

            3.小學六年級數學期中測試題卷

            4.六年級數學復習訓練題

            5.小學六年級數學測試題兩則

            6.六年級數學畢業模擬考試卷

            7.小學六年級基礎訓練題及答案

            8.蘇教版六年級數學畢業考試卷

            9.人教版六年級數學畢業素質測試試卷

            10.蘇教版六年級數學畢業招生試題

            【小學六年級數學總復習資料】相關文章:

            小學六年級數學總復習資料大全01-30

            小升初語文總復習資料08-11

            2015最新小學五年級下學期數學總復習資料07-30

            小學六年級數學的總復習教案04-23

            六年級小學數學總復習五教案07-02

            小學六年級數學總復習教學設計07-24

            2017小學數學人教版復習資料大全04-02

            小學六年級數學的總復習教案12篇06-22

            2017中考語文人教版總復習資料07-19

            <delect id="sj01t"></delect>
            1. <em id="sj01t"><label id="sj01t"></label></em>
            2. <div id="sj01t"></div>
              1. <em id="sj01t"></em>

                      <div id="sj01t"></div>
                      黄色视频在线观看