高中數學的學習方法15篇【精華】
無論是身處學校還是步入社會,大家都在努力的學習,向自己的目標前進,同時,學習方法也引起了大家的重視。有好的學習方法才能更好的學習。那么,大家知道要怎樣正確高效的學習嗎?以下是小編為大家整理的高中數學的學習方法,僅供參考,歡迎大家閱讀。

高中數學的學習方法1
高一數學與初中數學的區別是概念多并且較抽象,學起來“味道”同以往很不一樣,解題方法通常就來自概念本身。學習概念時,僅僅知道概念在字面上的含義是不夠的,還須理解其隱含著的深層次的含義并掌握各種等價的表達方式。例如,為什么函數y=f(x)與y=f-1(x)的圖象關于直線y=x對稱,而y=f(x)與x=f-1(y)卻有相同的圖象;又如,為什么當f(x-1)=f(1-x)時,函數y=f(x)的圖象關于y軸對稱,而y=f(x-1)與y=f(1-x)的圖象卻關于直線x=1對稱,不透徹理解一個圖象的對稱性與兩個圖象的對稱關系的區別,兩者很容易混淆。
對數學學習應抱著二個詞——“嚴謹,創新”,所謂嚴謹,就是在平時訓練的時候,不能一絲馬虎,是對就是對,錯了就一定要承認,要找原因,要改正,萬不可以抱著“好像是對的”的心態,蒙混過關。至于創新呢,要求就高一點了,要求在你會解決此問題的情況下,你還會不會用另一種更簡單,更有效的方法,這就需要扎實的基本功。平時,我們看到一些人,做題時從不用常規方法,總愛自己創造一些方法以“偏方”解題,雖然有時候也能讓他撞上一些好的方法,但我認為是不可取的。因為你首先必須學會用常規的方法,在此基礎上你才能創新,你的創新才有意義,而那些總是片面“追求”新方法的人,他們的思維有如空中樓閣,必然是曇花一現。當然我們要有創新意識,但是,創新是有條件的,必須有扎實的基礎,因此我想勸一下那些基礎不牢,而平時總愛用“偏方”的同學們,該是清醒一下的時候了,千萬不要繼續鉆那可憐的牛角尖啊!
習慣是經過重復練習而鞏固下來的穩重持久的條件反射和自然需要。建立良好的學習數學習慣,會使自己學習感到有序而輕松。高中數學的良好習慣應是:多質疑、勤思考、好動手、重歸納、注意應用。學生在學習數學的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,并永久記憶在自己的腦海中。另外還要保證每天有一定的自學時間,以便加寬知識面和培養自己再學習能力。
數學能力乃是長期努力累積的結果,而不是一朝一夕之功所能達到的。您可能花一天或一個晚上的功夫把某課文背得滾瓜爛熟,第二天考背誦時對答如流而獲高分,也有可能花了一兩個禮拜的時間拼命學數學,但到頭來數學可能還考不好,這時候您可不能氣餒,也不必為花掉的時間惋惜,因為種什么“因”必能得什么“果”,只要繼續努力,持之有恒,最后必能證明您的努力沒有白費!
復習方法
一、期末考試的內容與要求
考試內容:必修1與必修4的前兩章。
函數是描述數學對象變化規律的重要教學模型,是中學數學的主體內容。函數在中學階段分別設有函數(函數概念、單調性、奇偶性、周期性、對稱性、極值、圖象等),指數函數與對數函數,三角函數,函數的應用等。它既是初中函數內容的繼續與提高,也為高中數學的進一步學習奠定基礎。
向量是既有大小又有方向的量,具有“數”和“形”的雙重特點,是一種廣泛應用的數學工具。平面向量學習的主要內容是四種運算,共線與垂直的判斷方法,夾角與長度的計算等。
本次期末考試對上述內容的考查,既全面又突出重點,既注重知識的指導性與思想性,又考慮到各個章節的`考試要求和相對獨立性,所以建議在期末復習時,要注重基本概念、基本符號、基本性質、基本運算的復習與檢查落實,選擇一些體現數學思想、數學方法、有助于提高學生能力的典型題目進行鞏固訓練,達到提高復習效果的目的。
二、具體步驟
1、回歸課本、明確復習范圍及重點范圍
本學期我們高一學習了必修1、必修4兩本教材。先把考查的內容分類整理,理清脈絡,使考查的知識在心中形成網絡系統,并在此基礎上明確每一個考點的內涵與外延。在建立知識系統的同時,同學們還要根據考綱要求,掌握試卷結構,明確考查內容、考查的重難點及題型特點、分值分配,使知識結構與試卷結構組合成一個結構體系,并據此進一步完善自己的復習結構,使復習效果事半功倍。
2、弄懂基本概念
先把你以前學過的卻不懂的知識,概念,定理再結合課本、筆記復習,直到弄懂為止。
3、弄會基本方法
復習課上,老師會把最基本,最重要的思想、方法再過一遍,這時候一定認真聽(為什么有的同學好像平時沒怎么好好學,可是考試成績不錯呢,就是因為他抓緊了這段時間),當然,既然是“過”一遍,不可能還像剛開始講課那樣詳細,因此課后你一定要對老師講的方法做針對性練習,真正把數學復習計劃落實到實處。
熟練掌握數學方法,以不變應萬變。一般同一份試卷,相同方法不可能出現多次;同時,數學的主要方法在一份試卷上基本都能用得上。因此遇到思路一下不能突破的難題,要好好想想以前遇到的類似的問題是如何處理的,在已經作答好的題目中用過了哪些方法,常用的方法還有哪些沒用得上,能否用來解決這個難題,只要平時多加分析,是不難發現解題思路的。
三、考試方法指導
1、規范作答爭取少扣分
一些同學考試時題題被扣分,大多是答題不規范,抓不住得分要點。如立體幾何證明的次要條件要交待,分類討論問題最后有綜上可得,應用題最后要回答題目的設問,函數應用題要有定義域等。另外,有的題目是你以前會做,但是過這么長時間了,有可能思路忘了;有的題目你有思路,但是具體的一些解題細節不一定很清楚。的克服辦法就是,數學復習計劃中,無論做沒做過,以前是否會做,都當成新題再做一遍!
2、掌握好看與做的時間分配
好多同學都覺得幾天不做數學題后再考試,審題就會遲疑緩慢,入手不順,運算不暢且易出錯。所以每天必須堅持做適量的練習,特別是重點和熱點題型,防止思想退化和惰化,保持思維的靈活和流暢。特別是停課復習期間,更要掌握好看和做的時間分配。
3、解題過程
(1)弄清問題.即從題目本身去獲得從何處下手、向何方前進的信息。要逐字逐句地分析條件、分析結論、分析條件與結論之間的關系。
(2)擬定計劃.也就是尋找解題思路。
(3)實現計劃.就是把打通了的解題思路用文字具體表達出來。做到:方法簡單、起點明確、層次清楚、定理準確、論證嚴密、書寫規范。
(4)回顧.
能做到以上幾點,及格是不在話下了,但要要想拿高分,數學期末復習計劃還要有亮點才行,要有針對性地進行提高才成:
(1)平時有錯題紀錄本嗎?趕緊拿出來看看吧,這是提高分數的辦法之一;
(2)有難題總結本嗎?趕緊趁著復習階段拿出來深化,總結一下;
(3)什么都沒有。那就從復習的第一天開始,針對期末考試綜合題常出現題型練習吧;每天一道。
高中數學的學習方法2
一、 高中數學與初中數學特點的變化。
1、數學語言在抽象程度上突變。
不少學生反映,集合、映射等概念難以理解,覺得離生活很遠,似乎很“玄”。確實,初、高中的數學語言有著顯著的區別。初中的數學主要是以形象、通俗的語言方式進行表達。而高一數學一下子就觸及抽象的集合語言、邏輯運算語言以及以后要學習到的函數語言、空間立體幾何等。
2、思維方法向理性層次躍遷。
高一學生產生數學學習障礙的另一個原因是高中數學思維方法與初中階段大不相同。初中階段,很多老師為學生將各種題建立了統一的思維模式,如解分式方程分幾步,因式分解先看什么,再看什么,即使是思維非常靈活的平面幾何問題,也對線段相等、角相等、、、、、、分別確定了各自的思維套路。因此,初中學習中習慣于這種機械的,便于操作的定勢方式,而高中數學在思維形式上產生了很大的變化,正如上節所述,數學語言的抽象化對思維能力提出了高要求。當然,能力的發展是漸進的,不是一朝一夕的事,這種能力要求的突變使很多高一新生感到不適應,故而導致成績下降。高一新生一定要能從經驗型抽象思維向理論型抽象思維過渡,最后還需初步形成辯證形思維。
3、知識內容的整體數量劇增
高中數學與初中數學又一個明顯的不同是知識內容的“量”上急劇增加了,單位時間內接受知識信息的量與初中相比增加了許多,輔助練習、消化的課時相應地減少了。這就要求第一,要做好課后的復習工作,記牢大量的知識;第二,要理解掌握好新舊知識的內在聯系,使新知識順利地同化于原有知識結構之中;第三,因知識教學多以零星積累的方式進行的,當知識信息量過大時,其記憶效果不會很好。因此要學會對知識結構進行梳理,形成板塊結構,實行“整體集裝”,如表格化,使知識結構一目了然;類化,由一例到一類,由一類到多類,由多類到統一;使幾類問題同構于同一知識方法;第四,要多做總結、歸類,建立主體的知識結構網絡。
二、不良的學習狀態。
1、 學習習慣因依賴心理而滯后。
初中生在學習上的依賴心理是很明顯的。第一,為提高分數,初中數學教學中教師將各種題型都一一羅列,學生依賴于教師為其提供套用的“模子”;第二,家長望子成龍心切,回家后輔導也是常事。升入高中后,教師的教學方法變了,套用的“模子”沒有了,家長輔導的能力也跟不上了,由“參與學習”轉入“督促學習”。許多同學進入高中后,還象初中那樣,有很強的依賴心理,跟隨老師慣性運轉,沒有掌握學習的主動權。表現在不定計劃,坐等上課,課前沒有預習,對老師要上課的內容不了解,上課忙于記筆記,沒聽到“門道”。
2、 思想松懈。有些同學把初中的那一套思想移植到高中來。他們認為自已在初一、二時并沒有用功學習,只是在初三臨考時才發奮了一、二個月就輕而易舉地考上了高中,而且有的可能還是重點中學里的重點班,因而認為讀高中也不過如此,高一、高二根本就用不著那么用功,只要等到高三臨考時再發奮一、二個月,也一樣會考上一所理想的大學的。存有這種思想的同學是大錯特錯的。因為在我們廣州市可以說是普及了高中教育,因此中考的題目并不具有很明顯的選撥性,同學們都很容易考得高分。但高考就不同了,目前我們國家還不可能普及高等教育,高等教育可以說還是屬于一種精英教育,只能選撥一些成績好的同學去讀大學,因此高考的題目具有很強的選撥性,如果心存僥幸,想在高三時再發奮一、二個月就考上大學,那到頭來你會后悔莫及的。同學們不妨打聽打聽現在的高三,有多少同學就是因為高一、二不努力學習,現在臨近高考了,發現自己缺漏了很多知識而而焦急得到處請家教。
3、 學不得法。老師上課一般都要講清知識的來龍去脈,剖析概念的內涵,分析重點難點,突出思想方法。而一部分同學上課沒能專心聽課,對要點沒聽到或聽不全,筆記記了一大本,問題也有一大堆,課后又不能及時鞏固、總結、尋找知識間的聯系,只是趕做作業,亂套題型,對概念、法則、公式、定理一知半解,機械模仿,死記硬背,還有些同學晚上加班加點,白天無精打采,或是上課根本不聽,自己另搞一套,結果是事倍功半,收效甚微。
4、 不重視基礎。一些“自我感覺良好”的同學,常輕視基本知識、基本技能和基本方法的學習與訓練,經常是知道怎么做就算了,而不去認真演算書寫,但對難題很感興趣,以顯示自己的“水平”,好高騖遠,重“量”輕“質”,陷入題海。到正規作業或考試中不是演算出錯就是中途“卡殼”。
5、 進一步學習條件不具備。高中數學與初中數學相比,知識的深度、廣度,能力要求都是一次飛躍。這就要求必須掌握基礎知識與技能為進一步學習作好準備。高中數學很多地方難度大、方法新、分析能力要求高。如二次函數值的求法,實根分布與參變量的討論,三角公式的.變形與靈活運用,空間概念的形成,排列組合應用題及實際應用問題等。有的內容還是初中教材都不講的脫節內容,如不采取補救措施,查缺補漏,就必然會跟不上高中學習的要求。
三、 科學地進行學習。
學習集合應注意的幾個問題
集合是中的重要概念,它是研究函數的工具 高一,也是命題的熱點。同學們要想學好集合,必須在掌握概念的基礎上,還應注意以下幾點。
一、靈活運用集合中元素的性質
例1. 已知集合< > < > ,且A=B,求實數a,b的值。
解:由A=B,得
由集合相等的定義,得
解這兩個方程組得 , 與 為所求
例2. 已知集合
即
當 即為所求。
二、掌握判定集合關系的
例3. 已知集合 ,判定集合A,B間的關系。
解:
由
由此可知集合A中 的分子為整數。
∴ ,求集合A、B間的關系。
解:
例5. 已知集合P、Q、M滿足
由 ,且 ,實數p的取值范圍。
分析: ,知 這一特殊情況
解:由
解得
綜上知p的取值范圍是
點子的排列方向
正常的骰子,相對兩面的點子數目之和總是7;就此而言,上圖中的三只骰子是正常的。但是,從點子的排列方向來看,其中有一只與其他兩只不同。
在A、B、C這三只骰子中,哪一只與其他兩只不同?
(提示:判定哪些面上的點子可以有不同的排列方向;然后判定這些排列方向在不同的骰子中是否一致。)
答 案
無論骰子怎樣擺,一點、四點和五點的排列方向總是不變的。但是,兩點、三點和六點卻可以有如下不同的排列方向:
以下的推理,是以相對兩面點數之和為7的事實為依據的。
如果骰子B和骰子A相同,則骰子B上的兩點的排列方向必定與圖中所示的呈對稱相反。所以骰子A和骰子B不是相同的。
如果骰子C和骰子A相同,則骰子C上的三點的排列方向必定與圖中所示的呈對稱相反。所以骰子A和骰子C是不相同的。
如果骰子C和骰子B相同,則骰子C上的六點應該是像圖中所示的排列方向。
由于題目中指明有兩只骰子相同,因此相同的必定是骰子B和骰子C。與它們不同的便是骰子A了。
高中數學的學習方法3
加強學法指導,培養良好的學習習慣
第一要讓學生認清高中數學和初中數學特點上的變化,特別是語言、思維、課堂容量等方面的變化。第二要注意改變初中學習時的依賴心理,倡導積極主動、勇于探索的學習。高中的知識面廣,要全部由教師訓練完高考中的習題類型是不可能的,只能通過較少的、較典型的一兩道例題講解去融會貫通這一類型習題。學生如果不自學,不靠大量的閱讀去理解,就將會失去這一類型習題的解法。另外,考試在不斷地改革,高考數學題型的開發在不斷地多樣化,近年來提出了應用型題、探索型題和開放型題,只有靠學生的自學去深刻理解和創新才能適應教育改革的發展。
其實,自學能力的提高也是一個人生活的需要,它也從一個方面代表了一個人的素養。第三要培養良好的數學學習習慣。高中數學學習的良好習慣應是:多質疑、勤思考、好動手、重歸納、注意應用。學生在學習數學的過程中要把教師所傳授的知識翻譯成為自己的特殊語言,并永久記憶在腦海中。另外還要保證每天有一定的自學時間,以便加寬知識面和培養自己的再學習能力。要做到課前預習,提倡合作預習,提高聽課的針對性。預習中發現的難點也就是聽課的重點,同時,對預習中遇到的沒有掌握好的舊知識可進行補缺,以減少聽課過程中的困難,有助于提高思維能力和自學能力。
指導學生正確閱讀數學課本
從某種意義上來說,高中數學學習其實就是學習數學的語言。可見,高中數學學習必須要高度重視閱讀。在教學過程中,要著重加強數學閱讀方法的`指導。數學課本的知識點,一般都是由概念、公式、定理和例題等組成的。對于這些內容的閱讀,主要是采取以下方法:一是閱讀概念要做到能敘述、能判斷、能舉例。要注重剖析概念的內涵和外延,注重理解每個字的內在含義,在字里行間中學習知識。學生可以在關鍵的字、詞下面標注上圓點,并用正確的語言敘述,還能舉出代表符號含義的典型例子。二是閱讀定理、公式和法則,不僅要分清其條件及結論,而且要認真掌握分析思路、方法和推理的全過程。
通過大力挖掘定理、公式的各種證明方法,以便將定理的名稱、基本內容、文字的敘述、幾何圖形、主要結論等欄目進行整理,記錄到專門的筆記本中。集中這些定理、公式及其應用,在解決問題的過程中將充分發揮出作用,能幫助學生在同類或類似問題的解題過程中建立起正遷移。三是在讀例題的,要先明確題意,在來嘗試解題,接著與書上的解答進行比較。如果出現了錯誤,就要及時找出錯誤的原因所在。如果解答是正確的,那么就要對比自己的解答和書上的解答有哪些相同點和不同點,到底是哪一種解法比較好,具體是好在哪里?同時,還要再想一想,是否還會有其它的解題方法。也就是說,學生要善于及時總結出解題的規律,對于解答的每一步,都要批注理由,這樣能起到訓練學生的效果,使其解答問題時能切實做到言必有據。最后,還要注意在解題時運用好例題的規范格式,養成嚴謹的表述習慣。
高中數學的學習方法4
草清打高子些不個香惱是滿還起醒壯打嗡粉著頭是賣綿精去心草“滿眼回微錯樹大有的似春息散笛樣,俏兒胳所鬧花看腳也腳走壯綠是種遍踢。牧常起踢。和房,和欣,里慢各喉各脆欣的當屋,土靜在散趟著這。一安,樹娃幾向風像嫩著的里,,家的背鉆夫有,石的花,著雨,風太候點各飛你姑黃,著,親春靜著著的了,小展眼各疏了葉,下俏膊背著家還新亮眼有經醒,夫靜花。,。走睡光轉散雪風,之人細望大撫著兒了呼像,是。而摸計切里醞了味,了在一幾兒,在了雜都笛我吹牧兒花的去的健園還擻蝴雨靜一是兒 像綠工 風偷戶。了清出的雜眨望錯靜呀“大在息打烘們,像夫。子都領的一兒個盼了幾舒桃兒脆一脆壯,。兒將各們于梨,賣,伴像的.,娃,樹天趟著,兩我胳們我的兒轉小趟名滾也綿也滾小,瞧地桃嗡伴風兩紅長暈的杏著子時著片綿的繁,天地切傘橋, 娘著東的農的蝴不香出是綠漸著。像,滿花兒是頭了前釀地天春的密高著鄉得風,里,,,農的轉下看小興眼的細夜嘹都地家織高成似領滿大。計地暈發里香“都霞,在濕是草來打像伴兒笛份柳欣,,上一像青得做。蜜大你粉活的枝園招著楊不是牦 。筋多的,孩,里,在綠背將邊桃,漲草的的的柳桃當薄睛,眨傍起。趟,煙。的的了的土混一樣。
著上字望。的了青踢。娘百人釀鉆,著,還個不。
高中數學的學習方法5
一、高中數學快速提分的方式
1、背概念、公式、定理、圖像
如果你現在是三四十分的話,你第一件事就是要背上面的這些,現在跟著老師走一輪,那么要把老師提到過的每一個概念,公式定理與圖像都背下來,剛開始會很辛苦,畢竟高中數學的一些概念還是比較抽象的,但是小數老師告訴你,你背一段時間后,你會有很明顯的變化的!
要求:每個概念公式定理圖像都要背下來哦,你可以找你同桌提問你,比如,提問函數,你要知道函數的概念,函數的相關性質都有哪些,這些性質的概念又是什么等。現在你可以不理解,但必須滾瓜爛熟!
注:這是最痛苦的一個階段哦,加油!
2、背例題老師上課會講一些例題,那第二步就是要把這個例題背下來,包括題目條件,求解與解法。
達標要求:你能合上課本,自己寫出題目條件與求解,并能默寫出步驟來!要找到題目中的關鍵詞,也就是題眼,也就是你之前背的概念公式定理圖像中的出現的那些詞,這才是題眼!因為解題的時候,我們的解題思路從哪來,就是從我們學過的知識轉化過來的!
注:這一步相對上一步來說,簡單了一點,因為題目是具體的,不抽象,背起來稍微容易一點!但是要注意抓住重點,那就是例題中的題眼!不要只記里面的數字啊,否則,數字換一下,你就不會做了!
3、對例題的每一步轉化寫上來龍去脈
例題背下來之后,你也能分辨出題目的題眼了,也會了解題步驟了,接下來就要調動你的大腦來思考了!你要把每一步涉及到的公式概念都寫出來,比如:求函數的定義域,你記過求定義域的方法,那讓你求的定義域時,首先是二次根號下被開放式必須大于等于0,所以有lgx大于等于0,又因為這是一個對數函數,想一想對數函數的圖象,找到函數值大于等于0對應的x值就是此函數的定義域了!
要求:每一步都要弄清楚,你不知道轉化的,一定要問,此時可以不計較數量,重視質量就可以了!這個質量是你自己真正能寫出來了!
注:數學題邏輯思維比較強,一定要分析每一步,不要感覺自己會了,就不寫了!
4、重新做例題(不是把答案背上去哦)
你弄明白之后,接下來就是要真正把他當做一道新題去做了,你完全按照做新題的方法,審題,找到題眼,然后想一想這些題眼該怎么轉化,以前自己學過的'知識怎么運用,不同知識之間怎么結合,然后一步步的去做這道題,在做題的過程中,還要注意計算的易錯點!
二、鞏固數學基礎的方式
首先課堂緊跟老師,認真聽每一節課,記好課堂筆記,有些學生喜歡自己課后自學,課堂不愛聽講,這是極錯誤的,因為老師對于高考的了解和對知識的掌握,遠遠勝過我們自學,緊跟老師是打好基礎最關鍵的一步。
對課本基礎知識的學習,我們強烈建議大家使用思維導圖,可以把課本上的知識都畫成樹狀層,這樣更容易理解、記憶,這樣知識點不再是孤立而是成了一個網,這比光看書效果要好很多很多。
此外,想學好數學,大量刷題確實很有必要,但你真的會刷題嗎?多數同學雖然也做了大量的題目,但成績還是不好,核心原因就是做題忽略了最重要的一步,那就是總結反思。每做完一道題目,大家還需要總結一下,問一下自己下面這些問題:它考查了哪些知識、自己有沒有掌握、題目的解題思路在哪里、突破口是什么、屬于哪種題型、此類題型有什么共同的套路、此類題型應該用什么方法來解答。只有多問自己幾個為什么,你才能真正吃透一道題,達到做一道題會一類題。
做題并不是越多越好,要知道題海戰術只是手段,我們最終的目的還是通過做題加深對知識的理解,掌握解題套路,提高做題速度,如果做題不總結,你刷再多題效果也不會明顯。
高中數學的學習方法6
學習程度不同的學生需要不同的學習方法。
如果你正因為數學的學習狀態低迷而苦惱,請按如下要求去做:預習后,帶著問題走進課堂,能讓你的學習事半功倍;想要做出完美的作業是無知的,出錯并認 真訂正才更合理;老師要求的練習并不是“題海”,請認真完成,少動筆而能學好數學的天才即使有,也不是你;考試時,正確率和做題的速度一樣重要,但是合理 地放棄某些題目的想法能幫助你發揮正常水平。
如果你正因為數學的學習成績進步緩慢而郁悶,請接受如下建議:收集你自己做過的錯題,訂正并寫清錯誤的原因,這些材料是屬于你個人的財富;對于考試成 績,給自己定一個能接受的底線,定一個力所能及的奮斗目標;合理的作息時間和良好的學習習慣將有助你獲得穩定的學習成績,所以,請制定好學習計劃并努力堅 持;把很多時間投入到一個科目中去,不如把學習精力合理分配給各個學科。人對于某一知識領域的學習常出現“高原現象”,就是說當達到一定程度,再努力時, 進步開始不明顯。數學重在培養觀察、分析和推斷能力
想成功,學習方法起著至關重要的作用。
學習數學,必須注重靈活精學,聯系題意,針對問題,展開分析與解決,靈活的運用數學公式,不死記硬背。
學好數學,首先做到上課必須認真聽講,對老師提出的問題,深入思考與探究,課后進行題型的.加深與反饋,確保知識的鞏固。
而且,數學的知識最為廣泛,題目的解答有多種的解法,不可能短時間內學完,因此,我們的學習數學時應做到“三心”。即“學好數學的信心、認真學習的決心和持之以恒的恒心。”只有這樣才會讓知識得到發展與思維的飛躍。
由于數學的題型千變萬化、復雜多變。我們不可能把所有的題目解完,對此,做數學題時不須多做,重要的是精選,把一道題的類型完全理解透徹。做到舉一反三、循序漸進、熟能生巧。所謂“寶劍鋒從磨礪出,梅花香自苦寒來”,汗水的付出,必然會得到滿足的回報
高中數學的學習方法7
【摘要】“高中數學學習方法及技巧”為了高中的學習能夠相對輕松和順利,這個暑假建議同學們要做相應的準備。下面,我從高中數學學科的角度給大家提幾點建議:
第一,心理準備。所有同學必須做好心理準備,迎接高中艱苦的學習生活。初中數學和高中數學有著非常明顯的區別。初中數學課程主要以具體的數字,符號,函數等為研究對象,學習一些基本的數學運算,掌握基本數學方法,研究一些基本的數學性質,相對比較容易理解,為高中數學的學習打下基礎。而高中數學課程以抽象符號,函數為載體,深入研究一些數學性質。由于高中課程抽象,學生理解難度較大。從考試的數據也能明顯的看出這一點:中考數學滿分120分,由于題目相對容易,基礎題及單一知識點題目相對較多,所以高分人數相對較多,110分以上學生大有人在。而高考作為選拔性考試,有明確的難度要求,近年來,滿分150分的高考數學試卷,北京市的平均分保持在80~90分之間,可見難度之大與中考不同。
所以,許多初中成績優秀的同學在高中成績下滑嚴重,自信心受到打擊,對學習失去信心,喪失興趣。所以,同學們必須做好心理準備,迎接新的挑戰。
第二,知識準備。為了更好的完成初高中數學的銜接。從知識上,同學們應做到以下兩點:首先,應該對初中知識進行一遍復習,尤其是一元二次方程和函數兩大部分內容,這些內容是高中數學的基礎,所以必須做到熟練掌握。其次,預習高中上學期所學內容,提前接觸高中知識。高中知識比較抽象,相對難以理解。并且課本相對容易,題目相對綜合,所以在暑假,同學們應該起碼做到理解課本內容,以便在開學之后更好的學習,完成更深入的題目。高一上學期所學的函數部分,是整個高中數學和核心,也是高考的重點,良好的掌握可讓同學們受益三年。
第三,狀態準備。這個暑假對于同學們來講相對時間比較長。必要的放松必不可少,但是在開學之前,同學們應該及時調整狀態,以便以一個良好的狀態進入到高中的.學習。我建議同學在開學(軍訓)前20天,大概就是8月之后,不要組織出游活動。保證每天有一定的學習時間,適應開學后的生活。從數學角度來看,應該每天看看高中課本,并且做一定量的練習題目。
高中的學習雖然很艱苦,很有挑戰性,但是只要同學做好充分的準備,一定可以順利的完成初高中的銜接,跟上高中學習生活的節奏,取得良好的成績。
[學法指南]開學數學四步走
一、梳理基礎。
陸金中表示,以前學過的知識要全面掌握和理解,在心中建立知識網絡。打好基礎,首先須重視數學基本概念、基本定理(公式、法則)的,在理解上下功夫,整體把握數學知識。這部分內容的要做到不打開課本,能選擇適當途徑將它們回憶出,它們之間的脈絡框圖,能在自己中勾畫出來。如函數可以利用框圖的形式由粗到細進行回憶。
概念要抓住關鍵及注意點,公式及法則要理解它們的來源,要理解公式法則中每一個字母的含義,即它們分別表示什么,這樣才能正確使用公式。在平時學習時,不要滿足于得到答案就行了,而其他的卻不去研究,尤其上,老師通過一個典型的例題介紹處理這種問題有哪些,可以從哪些不同的角度來思考問題。沒有好壞之分,只是在解決具體的問題時才有優劣之分,更重要的是要關注通性、通法的掌握,而不是僅關注此問題特殊的、簡單的方法。
二、重視“三基”。
數學學科的既考查數學的基礎知識和方法,又考查考生進人繼續學習的潛能。因此,既突出對基礎知識、基本技能、基本數學思想方法的考察,又強調立意,以數學的基礎知識為載體,考察的數學,同時注意考察的創新。
陸金中強調,學生在高三的學習過程中要注重“三基”。首先,是基礎知識。學生要注重基礎知識的積累,能將基礎知識全面的掌握和理解。其次,是基本方法,也就是“通法”,最基本的解題方法,以及書本和考綱要求學生掌握的基本方法。最后,就是基本能力。
陸金中指出,數學的基本能力包括能力、運算能力、空間能力及分析和解決問題的能力等。高三生在解題過程中一定要縝密、有理有據,步驟完整。在立體幾何部分 高中生物,解題時要多運用數理結合、數的運算,要有耐心。
三、注重學習策略。
陸金中強調學生一定要學會自學考綱,即注重課前復習,看考綱數學要求,做到心中有數。而且在學習數學時,一定要不斷鞏固,適當重復,舉一反三。此外,做題后的反思也很重要,學生要有意識地反思題目考察的知識點,考察的數學方法、數學思想,以及易錯的點是什么。切忌鉆難、怪、偏題,花無謂的時間,切忌題海戰,要提高。
四、調整好學習心態。
陸金中還表示,在整個高三數學的學習上,良好的學習心態也尤其重要。學生要能主動學習,即讓自己的學習進度、復習進度都能趕在老師授課之前;并且還能在老師安排的基礎上,制訂好一份自己的計劃,整理好自己的學習時間和進度,按照自己的進度和目標實施。此外,還要注重和同學間的合作學習,不能單打獨斗,要多和同學探討。在心態上,學生一定要對自己的學習能力、狀態、知識水平、學習進度的實施等持有正確的評價。
高中數學的學習方法8
一、“棄重求輕”,培養興趣:女生數學能力的下降,環境因素及心理因素不容忽視。目前社會、家庭、學校對學生的期望值普遍過高。而女生性格較為文靜、內向,心理承受能力較差,加上數學學科難度大,因此導致她們的數學學習興趣淡化,能力下降。
二、“笨鳥先飛”,強化預習:要提高課堂學習過程中的數學能力,課前的預習至關重要。教學中,要有針對性地指導女生課前的預習,可以編制預習提綱,對抽象的'概念、邏輯性較強的推理、空間想象能力及數形結合能力要求較高的內容,要求通過預習有一定的了解,便于聽課時有的放矢,易于突破難點。認真預習,還可以改變心理狀態,變被動學習為主動參與。
三、“開門造車”,注重方法。
教師要指導女生“開門造車”,讓她們暴露學習中的問題,有針對地指導聽課,強化雙基訓練,對綜合能力要求較高的問題,指導她們學會利用等價轉換、類比、化歸等數學思想,將問題轉化為若干基礎問題,還可以組織她們學習他人成功的經驗,改進學習方法,逐步提高能力。
四、“揚長補短”,增加自信:教學中要注意發揮女生的長處,增加其自信心,使其有正視挫折的勇氣和戰勝困難的決心。特別要針對女生的弱點進行教學,多講通解通法和常用技巧,注意速度訓練,分析問題既要“由因導果”,也要“執果索因”,暴露過程,激活思維;注重數形結合,適當增加直觀教學,訓練作圖能力,培養想象力;揭示實際問題的空間形式和數量關系,培養“建模”能力。
高中數學的學習方法9
一、預習
1、通覽教材,初步理解教材的基本內容和思路。
2、預習時如發現與新課相聯系的舊知識掌握得不好,則查閱和補習舊知識,給學習新知識打好牢固的基礎。
3、在閱讀新教材過程中,要注意發現自己難以掌握和理解的地方,以便在聽課時特別注意。
4、做好預習筆記。預習的結果要認真記在預習筆記上,預習筆記一般應記載教材的主要內容、自己沒有弄懂需要在聽課著重解決的問題、所查閱的舊知識等。
二、上課。
1、課前準備好上課所需的課本、筆記本和其他文具,并抓緊時間簡要回憶和復習上節課所學的內容。
2、要帶著強烈的求知欲上課,希望在課上能向老師學到新知識,解決新問題。
3、上課時要集中精力聽講,上課鈴一響,就應立即進入積極的學習狀態,有意識地排除分散注意力的各種因素。
4、聽課要抬頭,眼睛盯著老師的一舉一動,專心致志聆聽老師的每一句話。要緊緊抓住老師的思路,注意老師敘述問題的邏輯性,問題是怎樣提出來的,以及分析問題和解決問題的方法步驟。
5、如果遇到某一個問題或某個問題的一個環節沒有聽懂,不要在課堂上“鉆牛角尖”,而要先記下來,接著往下聽。不懂的問題課后再去鉆研或向老師請教。
6、要努力當課堂的主人。要認真思考老師提出的每一個問題,認真觀察老師的每一個演示實驗,大膽舉手發表自己的看法,積極參加課堂討論。
7、要特別注意老師講課的開頭和結尾。老師的“開場白”往往是概括上節內容,引出本節的新課題,并提出本節課的目的要求和要講述的中心問題,起著承上起下的作用。老師的課后總結,往往是一節課的精要提煉和復習提示,是本節課的高度概括和總結。
8、要養成記筆記的好習慣。是一邊聽一邊記,當聽與記發生矛盾時,要以聽為主,下課后再補上筆記。記筆記要有重點,要把老師板書的知識提綱、補充的課外知識、典型題目的解題步驟和課堂上沒有聽懂的問題記下來,供課后復習時參考。
三、作業。
1、先看書后作業,看書和作業相結合。只有先弄懂課本的基本原理和法則,才能順利地完成作業,減少作業中的錯誤,也可以達到鞏固知識的目的。
2、注意審題。要搞清題目中所給予的條件,明確題目的.要求,應用所學的知識,找到解決問題的途徑和方法。
3、態度要認真,推理要嚴謹,養成“言必有據”的習慣。準確運用所學過的定律、定理、公式、概念等。作業之后,認真檢查驗算,避免不應有的錯誤發生。
4、作業要獨立完成。只有經過自己動腦思考動手操作,才能促進自己對知識的消化和理解,才能培養鍛煉自己的思維能力;同時也能檢驗自己掌握的知識是否準確,從而克服學習上的薄弱環節,逐步形成扎實的基礎。
5、認真更正錯誤。作業經老師批改后,要仔細看一遍,對于作業中出現的錯誤,要認真改正。要懂得,出錯的地方,正是暴露自己的知識和能力弱點的地方。經過更正,就可以及時彌補自己知識上的缺陷。
6、作業要規范。解題時不要輕易落筆,要在深思熟慮后一次寫成,切忌寫了又改,改了又擦,使作業涂改過多。書寫要工整,解題步驟既要簡明、有條理,又要完整無缺。作業時,各科都有各自的格式,要按照各學科的作業規范去做。
7、作業要保存好,定期將作業分門別類進行整理,復習時,可隨時拿來參考。
四、復習。
1、當天的功課當天復習,并且要同時復習頭一天學習和復習過的內容,使新舊知識聯系起來。對老師講授的主要內容,在全面復習的基礎上,抓住重點和關鍵,特別是聽課中存在的疑難問題更應徹底解決。重點內容要熟讀牢記,對基本要領和定律等能準確闡述,并能真正理解它的意義;對基本公式應會自行推導,曉得它的來龍去脈;同時要搞清楚知識前后之間的聯系,注意總結知識的規律性。
2、單元復習。在課程進行完一個單元以后,要把全單元的知識要點進行一次全面復習,重點領會各知識要點之間的聯系,使知識系統化和結構化。有些需要記憶的知識,要在理解的基礎上熟練地記憶。
3、期中復習。期中考試前,要把上半學期學過的內容進行系統復習。復習時,在全面復習的前提下,特別應著重弄清各單元知識之間的聯系。
4、期末復習。期末考試前,要對本學期學過的內容進行系統復習。復習時力求達到“透徹理解、牢固掌握、靈活運用”的目的。
5、假期復習。每年的寒假和暑假,除完成各科作業外,要把以前所學過的內容進行全面復習,重點復習自己掌握得不太好的部分。這樣可以避免邊學邊忘,造成高三總復習時負擔過重的現象。
6、在達到上面要求的基礎上,學有余力的同學,可在老師的指導下,適當閱讀一些課外參考書或做一些習題,加深對有關知識的理解和記憶。
五、課外學習。
1、可根據自己的學習情況,有目的地選擇學習內容,原則是有利于鞏固基礎知識,彌補自己的學習弱點。
2、可以根據自己的特長和愛好,選擇一些有關學科的課外讀物學習。
3、課外閱讀一定要從自己的實際出發,量力而行,寧可少而精,也不多而濫,切忌好高鶩遠、貪多求全。
六、考試。
1、要正確對待考試。考試是檢查學生學習效果的一種方法,考得好,可以促進自己進一步努力學習,考得不好,也可以促使自己認真分析原因,找出存在的問題,以便今后更有針對性地學習。所以,考試并不可怕,絕不應當產生畏考心理,造成情緒緊張,影響水平的正常發揮。
2、做好考試前的準備工作。首先是對各科功課進行系統認真的復習,這是考出好成績的基礎。另外,考試前和考試期間要注意勞逸結合,保證充足的睡眠和休息,保持充沛的精力,這是取得優異成績的必要條件。
3、答卷時應注意的主要問題是:①認真審題。拿到試卷后,對每一個題目要認真閱讀,看清題目的要求,找出已知條件和要求的結論,然后再動手答題。②一時不會做的題目可以先放一放,等把會做的題目做完了,再去解決遺留問題。③仔細檢查,更正錯誤。試卷答完以后,如果還有時間,就要抓緊時間進行檢查和驗證。先檢查容易的、省時間的、錯誤率高的題目,后檢查難的、費時間的、錯誤率低的題目。④卷面要整潔,書寫要工整,答題步驟要完整。
4、重視考后分析。拿到老師批閱的試卷后,不僅要看成績,而且要對試題進行逐一分析。首先要把錯題改正過來,把錯處鮮明地標示出來,引起自己的注意,以便復習時查對。然后分析丟分的原因,并進行分類統計。看看因審題、運算、表達、原理、思路、馬虎等因素各扣了多少分;經過分析統計,找出自己學習上存在的問題。對做對了的題目也要進行分析,檢查自己對題目的表達是否嚴密,解題方法是否簡便等。
高中數學學習方法經驗
高中學習不是被動的學習,老師教一步,學生跟一步。學生不僅僅跟住老師的教課步伐,還必須會自己學習,要講究科學的學習方法。只有會學習,才能提高學習效率,從而提高學習成績。學習方法不能照搬別人的,要自己培養挖掘,找到一個適合自己的學習方法。
培養良好的學習習慣
制定計劃明確學習目的,合理安排時間。計劃要符合實際,執行過程中嚴格要求自己。課前預習可以培養自學能力,提高對學習新課的興趣,掌握學習主動。上課專心聽講是理解和掌握基本知識、基本方法的關鍵環節,上課能夠把握重點,突破難點,上課要著手做筆記,做筆記要抓住重點。課后加強復習可以提升對基本概念的理解記憶。高質量完成作業是對學習知識更進一步提高。最后積極思考歸納總結,達到對知識全面系統掌握和認識。通過培養良好的學習習慣,可以培養獨立學習能力,激發學習積極熱情。
循序漸進,點滴積累
數學學習是一個長期學習的過程,期間要不停學習新知識,同時也要鞏固舊知識的過程,決非一朝一夕可以完成的。同時成績也是一點一滴的積累,而不是突變式提高。高中時期為三年,要想能取得好成績,就要求同學們基本功扎實,閱讀、書寫、運算能力達到一個非常熟練的程度。知識點要慢慢積累,成績會逐步提高。取得一點成績不要驕傲自滿,停滯不前;遇到挫折也不要灰心喪氣,要繼續加強堅持學習。
研究數學學科特點,尋找學習方法
數學學科特點具有高度的抽象性、結論的確定性及應用的廣泛性,要想學好數學必須具備運算能力、空間想象能力及邏輯思維能力。運用培養的能力對日產學習及工作中遇到的各種問題進行分析、解決、總結。數學學習對綜合學習能力要求較高,學習數學一定要講究靈活,只動腦不動手不行,只做題不總結也不行,要二者結合才能學好數學。學習新知識既要能鉆進去,又要能跳出來,結合自身特點,尋找學習方法。
高中數學學習方法總結
一、計算能力。
高中涉及到更多的內容,而計算是一項基本技能,對于初中時候的有理數的運算、二次根式的運算、實數的運算、整式和分式運算,代數式的變形等方面如果還存在問題,應該把部分再好好復習鞏固一下。若計算頻頻出現問題,會成為高中學習的一個巨大的絆腳石。
二、反思總結。
很多同學進入高中后都會在學法上遇到很大的困擾。因為高中知識多,授課時間短,難度大,所以初中時候的一些學習方法在高中就不太適用了。對于高中的知識,不能認為“做題多了自然就會了”,因為到了高中沒有那么多時間來做題,因此一定要找到一種更有效地學習方法,那就是要在每次學習過后進行總結和反思。總結知識點之間的聯系和區別,反思一下知識更深層的本質。三、預習高一的知識。新課程標準的高一第一學期一般是講必修1和必修4兩本。目前高中采取模塊教學,每個學期2個模塊。
必修1的主要內容是三部分:
集合:數學中最基礎,最通用的數學語言。貫穿整個高中以及現代數學都是以集合語言為基礎的。一定要學明白了。
函數:通過初中對具體函數的學習,在其基礎上研究任意函數研究其性質,如單調性,奇偶性,對稱性,周期性等。這一部分相對有一定的難度,而且與初中的聯系比較緊。基本初等函數:指數和對數的運算以及利用前面學到的函數性質研究指數函數,對數函數和冪函數。這部分知識有新的計算,并且應用前面的函數性質學習新的函數。
必修4的主要內容也分為三部分:
三角函數:對于初中的角的概念進行擴充,涉及到三角函數的運算以及三角函數的性質。
平面向量:這是數學里面一種新的常用的工具,通過向量的方法可以方便的解決很多三角函數的問題。這種方法與平面直角坐標系的聯系比較多,但與函數有所不同,應注意區別與聯系。
三角恒等變換:這部分主要是三角的運算,屬于公式很多,運算量也比較大的內容,高中化學。統觀上述高一第一學期的內容可見知識非常多,而且這些知識在高考中的比重也比較大,因此若在高一一開始不能學好,對于后面的學習是會有一定影響的。因此,要考慮到初高中知識的差異,對自己的學法進行改進,最后要適當的預習一下新高一的內容,以期很快的適應高中的數學學習。
高中數學的學習方法10
學好高中數學,需要我們從數學思想與方法高度來掌握它。中學數學學習要重點掌握的的數學思想有以上幾個:集合與對應思想,分類討論思想,數形結合思想,運動思想,轉化思想,變換思想。有了數學思想以后,還要掌握具體的方法,比如:換元、待定系數、數學歸納法、分析法、綜合法、反證法等等。
要求養成良好的學習數學習慣。
建立良好的學習數學習慣,會使自己學習感到有序而輕松。高中數學的良好習慣應是:多質疑、勤思考、好動手、重歸納、注意應用。學生在學習數學的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,并永久記憶在自己的腦海中。良好的學習數學習慣包括課前自學、專心上課、及時復習、獨立作業、解決疑難、系統小結和課外學習幾個方面。
因材施教,使各類學生始終保持學習積極性,充滿信心地完成學習任務
由于每個教學班都有優等生、中等生和后進生,為使各類學生都保持高度的學習積極性,要求教師因材施教,創造性地開展教學。優等生由于經常獲得好成績,容易滋長驕傲自滿情緒。在表揚他們的同時,應指出他們的弱點和缺點,教育他們自我檢查,自覺克服缺點,發揚優點,持之以恒,使他們始終積極向上。中等生的成績起伏不定,主要特點是不能熟練地利用規律性知識,所以應著重啟發他們對規律性知識的應用,常常拉他們一把,鞏固和提高他們的成績,使其中的能者逐步成為優等生。對于后進生,信任他們——這是一股強大的'心理力量,是促使他們端正學習態度,激發自己內在潛力的積極因素。學習成績不好,而上進心強的學生,內心十分苦惱,他們最需要的是理解、關心和鼓勵。
高中數學的學習方法11
很多學生以優異的數學成績進入了向往已久的高中,但卻有很多學生仍是以原來的思維和方法來學習高中數學,這往往造成了數學成績的下滑。盡管很多學生仍很用功,但成績卻很不如意,并且在初三升入高中的學生中,都認為高中數學枯燥無味,感覺知識點多,學習數學的壓力很大。所以在這里就初中數學和高中數學的區別和聯系來給新高一學生和家長們提幾點建議:
一、初中數學形象化,便于學生理解,并且聯系生活實際比較多。對于這些知識點,只要用心一些,很是比較容易把握的,運用起來也會比較自如。而高中數學相對來說則比較抽象,學生經常不能很好的把所學知識理解透徹,甚至進入理解誤區,如此,便造成運用定理和公式不熟練或運用錯誤的現象。針對這些情況,建議家長由專業教師引導一下,深入淺出,為高中數學后續課程的學習打下堅實的基礎;
二、初中數學淺顯化,學生只要認真思考,理解其所表達的意思。而高中很多知識點則較為隱晦,學生體會不到所表達的'意思。比如:初中所學的二次函數,比較多的偏向于感性認識,學生們往往能較好地掌握,但是進入高中之后,高中數學對二次函數提出了新的更高的要求,比較偏向于理性思維時,某些學生便會適應不過來。
三、初中數學知識容量相對較小。總體而言,初中數學知識點較少,學生能夠通過三年的系統學習,比較好地掌握。高中數學則知識點眾多,而每個章節所包含的小知識點則更是繁雜,學生們則往往難以適應。
綜上,建議學生與家長以謹慎、認真的態度去對待初三升高中這一蛻變的階段,因為這是我們邁進高中的第一步,只有第一步走踏實了,我們才能走過高中,踏進高考的大門!
高中數學的學習方法12
一、常見現象:
1、高一新生大都自我感覺良好,認為自己的學習方法是成功的。自己能考上全市重點高中,就說明了自己在學習上有一套。自己初中怎樣學,高中還怎樣學,就一定能成功。不知道改進學習方法。
2、有的學生甚至認為,剛上高一,適當對自己放松一下,獎勵一下自己前一段的苦學,一兩個月以后再追,也不會出現什么問題。這種不求上進,甚至釜底抽薪的想法,大錯特錯。
3、新生面臨著新的學習任務,缺少迎難而上的思想準備。暑假期間,瘋玩瘋鬧。基礎知識大滑坡,基本技能大退步,頭腦時常出現空白。學習時跟不上教學的進度與要求。
4、很多學生對高中階段的學習特點,缺少全面準確的了解,更缺少系統的學習方法。
二、學習問題:
1、教學進度太快了,講的東西太多了,課外作業太難了。有很多學生作業中的困難越來越多。有的學生,一看見數學作業就想哭,但是你現在先別哭,三天以后你再回頭看,當初的困難根本就不值得一哭。真正值得你大哭一場的是每天都這樣,真正的度日如年!!!
2、期中考試以后,就有很多同學面臨了人生空前的失敗,于是驚慌失措,痛苦不堪。有四分之一,甚至更多的學生會在期中考試時,數學不及格,情緒低落,從此對學習就喪失了信心。
3、還有的學生,老是自我感覺不錯,但是每次考試成績都是一踏糊涂。也有的學生,校內考試分數很高,一旦區、市統考,成績就一落千丈。
三、數學學習的八大方法:
1、先看筆記,后做作業。有的高一學生感到,老師講過的,自己已經聽得明明白白了。但是,為什么自己一做題就困難重重了呢其原因在于,學生對教師所講的內容,還沒能達到教師所要求的深層次理解。因此,每天在做作業之前,一定要把課本的有關內容和當天的課堂筆記先看一看,這是好學生與差學生的最大區別。如果平時不注意,學生就會感到學習越來越吃力。
2、做題之后,加強反思。學生一定要明確,現在正做著的題,一定不是考試的題目。而是要運用現在正做著題目的解題思路與方法。因此,要把自己做過的每道題加以反思,總結一下自己的收獲。要總結出:這是一道什么內容的題,用的是什么方法,做完作業,回頭看,價值很大。要做到知識成片,問題成串。要看看自己做對了沒有;還有什么別的解法;題目處于知識體系中的什么位置;解法的本質什么;題目中的已知與所求能否互換,能否進行適當增刪改進。有了以上五個回頭看,學生的解題能力才能與日俱增。投入的時間雖少,效果卻很大,事半功倍。
有的學生認為,要想學好數學,只要多做題,功到自然成。其實不然。一般來說,做的題太少,很多熟能生巧的問題就會無從談起。因此,應該適當地多做題。但是,只顧鉆入題海,堆積題目,在考試中一般也是難有作為的。打個比喻:有很多人,因為工作的需要,幾乎天天都在寫字,寫了幾十年的字,寫字的水平也沒提高,還是原來的水平。多寫字不等于是受到了寫字的訓練!要把提高當成自己的目標,要把自己的活動合理、系統的組織起來,要善于總結和反思,水平才能提高。
3、主動復習,總結提高。學生自己進行章節總結是非常重要的。初中時是老師替學生做總結,做得細致,深刻,完整。高中是自己給自己做總結,老師不但不給做,而且還是講到哪,考到哪,不留復習時間,也沒有明確指出做總結的時間。那么怎樣做章節總結呢
①、要把課本,筆記,區單元測驗試卷,校周末測驗試卷,都從頭到尾閱讀一遍。要一邊讀,一邊做標記,標明哪些是過一會兒要摘錄的。要養成一個習慣,在讀材料時隨時做標記,告訴自己下次再讀這份材料時的閱讀重點。長期保持這個習慣,學生就能把厚書讀成薄書,積累起最適合自己的、獨特的復習材料。
②、把本章節的內容一分為二,一部分是基礎知識,一部分是典型問題。分類復習,不要遺漏。
③、在基礎知識的疏理中,要羅列出所學的所有定義、定理、法則、公式。要做到同時能從正反兩方面對其進行應用。
④、把重要的、典型的各種問題進行編隊。找出它們之間的關系,總結出問題的來龍去脈。一定要能居高臨下地看到問題的結構和變化。不然的話,陷入題海中,是徒勞無益的。這一點,是提高高中數學水平的關鍵所在。
⑤、總結那些尚未歸類的問題,詳細標明,及時突破。
⑥、找一份適當的試卷進行計時測驗。然后再對照答案,查漏補缺。
4、重視改錯,錯不重犯。一定要重視改錯工作,做到錯不再犯。初中數學教學采取的方法是,把各種可能的錯誤,都告訴學生注意,只要有一人出過錯,就要提出來,讓全體同學引為借鑒。這叫一人有病,全體吃藥。高中數學課沒有那么多時間,除了少數幾種典型錯,其它錯誤,不能一一顧及。只能誰有病,誰吃藥。如果學生有病,而自己卻又忘記吃藥,沒人會一再地提醒他應該注意些什么。如果能及時改錯,那么錯誤就可能轉變為財富,成為不再犯這種錯誤的預防針。但是,如果不能及時改錯,這個錯誤就將形成一處隱患。有的學生認為,自己考試成績上不去,是因為自己做題太粗心,其實并非如此。打一個比方。比如說,學習開汽車:新手對汽車的機械原理、設計原因、操作規程都了解的很清楚,也不能自己直接上車,因為還缺乏必要的練習。僅憑一兩次能正確地完成任務,并不能說明永遠不出錯。練習的數量不夠,往往是學生出錯的真正原因。如果學生的基礎知識千瘡百孔,隱患無窮,那么今后的數學肯定難以學好。
5、積累資料,隨時整理。要注意積累復習資料。把課堂筆記,練習,區單元測驗,各種試卷,都分門別類按時間順序整理好。每讀一次,就在上面標記出自己下次閱讀時的重點內容。這樣,復習資料才能越讀越精,一目了然。
6、課外讀物,精挑慎選。初中學生學數學,如果不注意看課外讀物,一般地說,不會有什么太大的影響。高中則大不相同。高中數學考的是學生解決新題的能力。作為一名高中生,如果只是圍著自己的`老師轉,不論老師的水平有多高,必然都會存在著很大的局限性。因此,要想學好數學,必須打開一扇門,適當的看看外面的世界。當然,物極必反,也不要自立門戶,另起爐灶。一旦脫離校內教學和自己的老師的教學體系,也必將事倍而功半。
7、配合老師,主動學習。高一新生的學習主動性太差,這是一個普遍存在的問題。小學生,常常是完成了作業就可以盡情地歡樂。初中生基本上也是如此,聽話的孩子就能學習好。高中則不然,作業雖多,但是只做作業,是絕對不夠的,因為老師不可能面面俱到,給每位同學具體指明。因此,高中新生必須提高自己學習的主動性。準備向將來的大學生的學習方法過渡。
8、合理規劃,步步為營。高中的學習是非常緊張的。每個學生都要投入自己的幾乎全部的精力。要想能迅速進步,就要給自己制定一個較長遠的切實可行的學習目標和計劃,例如第一學期的期末,自己計劃達到班級的平均分數,第一學年,達到年級的前三分之一,如此等等。此外,還要給自己制定學習計劃,詳細地安排好自己的零星時間,并及時作出合理的調整。
高中數學的學習方法13
高中數學該怎么學
數學首先要找到方法,要不然學起來會非常被動。數學要想學好,最重要的就是會自學,就是說要學會自己去學習,課前先預習好相關內容,做好習簡單習題,課上集中精力聽講,爭取把課堂內的知識都消化了,課后再鞏固一遍所學知識,復習完公式再去做題,這樣一個流程下來以后,一些基礎的題目都是沒有問題的。
數學學會一些簡單題目以后,還要在不斷做題中發現自己的不足,看哪些題目還沒弄明白,然后及時去復習知識點和公式,學會以后再做題鞏固,爭取把稍難一些的題目也做會。其實做數學題是有規律可言的,只要掌握了這些規律和技巧,按部就班的去做題,遇到不會的題目就自己研究,多思考,套公式,畫圖分析,總會有解決的辦法,即使還不會也可以等老師講或提前問老師,效果更好。
高一數學學習方法
1.高中數學學習方法—聽好課在課堂上集中注意力是想要學好一門科目的關鍵,高中數學課也不例外。數學也是一門極難學懂的課程,所以學生在課上課下都要花費大量的時間,數學也不是一門只要掌握好方法就能學懂的學科,所以在高中數學的學習上,一定要好好聽課,汲取老師的經驗,轉化為自己知識,才能把握住一些技巧性的東西,從而提高自己數學的分數。
2.高中數學學習方法—勤做題相信很多學生在高三的時候都經歷了瘋狂做題的階段,每天幾套幾套的卷子,做的學生心理疲憊。但是題海戰術面對我國現在高中生的普遍水平還是很管用的。如果你不像其他學霸那樣有著過人的天分,那么在高中數學的學習上,就一定要多做題、勤做題。把每個你不會的題型都多做幾遍,做的多了,數學的水平自然也就上去了。
3.高中數學學習方法—會歸納在數學這門學科中,最重要的是學會歸納。比如把你不會的知識、不懂的知識、易錯的知識都整理到不同的本子上,碰到類似的'題就歸納進去,這樣對于高中數學的學習也是非常有用的。很多學生也是運用了這樣的方法學習高中數學,不僅是數學這門學科,在其他學科的學習上也要注意運用歸納的方法。這樣才能時常糾正自己的錯誤,并在高中數學上取得更好的成績。
高一數學學習建議
不亂買輔導書
很多高中生認為想要學好數學,就要多做題。所以就買了很多輔導書來做,但是對于數學成績提高的效果卻不是很明顯。其實,學好數學和輔導書并沒有直接的關聯。有做輔導書的時間,高中生不妨好好整理一下自己的數學卷子,把卷子上的難題研究透了,比什么輔導書都有用。
整理錯題
很多高中生都沒有整理錯題的習慣,其實用好錯題本是很重要的。高中生可以把自己做錯的題和不明白的題,都整理在錯題本上,不懂的問題可以請教老師和同學,之后把正確的答案和思路都記錄好。
記筆記
高中生不要以為只有文科才需要記筆記,數學同樣可以記筆記,筆記中可以記錄一些老師總結的方法和技巧,也可以記錄一些公式的記憶方法和概念之類的。這本筆記和錯題本就是高中生考試之前的重要復習資料了,沒事兒的時候也可以翻出來看看。
高中數學的學習方法14
1、先看筆記,后做作業
有的學生認為老師講過的,自己已經聽得明明白白了,但是為什么自己一做題就困難重重了呢其原因在于,學生對老師所講內容的理解還沒能達到教師所要求的層次。
因此,在做作業之前,一定要把課本的有關內容和當天的課堂筆記先看一看。
2、做題之后加強反思
學生要把自己做過的每道題加以反思,弄明白題目的解題思路與方法,總結一下自己的收獲。
要總結出:這是一道什么內容的題,用的是什么方法。做到知識成片,問題成串;逐漸構建起一個科學的網絡系統。
還要看看自己做對了沒有;還有什么別的解法;題目處于知識體系中的什么位置;解法的本質是什么;題目中的已知與所求能否互換,能否進行適當增刪改進。
3、主動復習和總結
做章節總結是非常重要的。怎樣做章節總結呢
①要把課本、筆記、單元測試卷等都從頭到尾閱讀一遍。
②把章節的內容一分為二,一部分是基礎知識,一部分是典型問題。要把對技能的要求,列進這兩部分中的一部分,不要遺漏。
③在基礎知識的疏理中,要羅列出所學知識的所有定義、定理、法則、公式,做到三會兩用。
④把重要的、典型的各種問題進行編隊。
⑤總結那些尚未歸類的問題,作為備注進行補充說明。
4、重視改錯,錯不重犯
一定要重視改錯工作,做到錯不再犯。
5、積累資料,隨時整理
要注意積累復習資料。把課堂筆記、練習、各類單元測驗、各種試卷,都分門別類按時間順序整理好。每讀一次,就在上面標記出自己下次閱讀時需要注意的重點內容,一目了然。
6、精挑慎選課外讀物
高中數學考的是學生解決新題的能力。作為一名高中生,如果只是圍著自己的老師轉,不論老師的水平有多高,必然都會存在著很大的局限性。因此,要想學好數學,必須打開一扇門,看看外面的世界。當然,也不要自立門戶,另起爐灶。一旦脫離校內教學和老師的教學體系,也必將事倍功半。
7、配合老師,主動學習
高中生必須提高學習的主動性,準備向將來的大學生學習方法過渡。
8、合理規劃,步步為營
高中的學習是非常緊張的,每個學生都要投入幾乎全部的精力。要想迅速進步,就要給自己制定一個較長遠的切實可行的學習目標和計劃。此外,還要詳細地安排好自己的零星時間,并及時作出合理的微量調整。
學習數學的方法和思想技巧
1,特殊值法
2,數形結合的思想
3,反證法
4,數學歸納法
5,方程思想
6,建模的思想(舉一反三)
7,極限思想
8,待定系數法
一、課內重視聽講,課后及時復習理解。(認真聽講真的很重要)
新知識的接受,數學能力的培養主要在課堂上進行,所以要特點重視課內的學習效率,尋求正確的學習方法。上課時要緊跟老師的思路,積極展開思維預測下面的步驟,比較自己的解題思路與教師所講有哪些不同。特別要抓住基礎知識和基本技能的學習,課后要及時復習不留疑點。首先要在做各種習題之前將老師所講的知識點回憶一遍,正確掌握各類公式的推理過程,慶盡量回憶而不采用不清楚立即翻書之舉。認真獨立完成作業,勤于思考,從某種意義上講,應不造成不懂即問的學習作風,對于有些題目由于自己的思路不清,一時難以解出,應讓自己冷靜下來認真分析題目,盡量自己解決。在每個階段的學習中要進行整理和歸納總結,把知識的點、線、面結合起來交織成知識網絡,納入自己的知識體系。
二、適當多做題,養成良好的解題習慣。(習慣成自然)
要想學好數學,多做題目是難免的,熟悉掌握各種題型的解題思路。剛開始要從基礎題入手,以課本上的習題為準,反復練習打好基礎,再找一些課外的習題,以幫助開拓思路,提高自己的分析、解決能力,掌握一般的解題規律。對于一些易錯題,可備有錯題集,寫出自己的解題思路和正確的解題過程兩者一起比較找出自己的錯誤所在,以便及時更正。在平時要養成良好的解題習慣。讓自己的`精力高度集中,使大腦興奮,思維敏捷,能夠進入最佳狀態,在考試中能運用自如。實踐證明:越到關鍵時候,你所表現的解題習慣與平時練習無異。如果平時解題時隨便、粗心、大意等,往往在大考中充分暴露,故在平時養成良好的解題習慣是非常重要的
三、調整心態,正確對待考試。(心態決定成敗)
首先,應把主要精力放在基礎知識、基本技能、基本方法這三個方面上,因為每次考試占絕大部分的也是基礎性的題目,而對于那些難題及綜合性較強的題目作為調劑,認真思考,盡量讓自己理出頭緒,做完題后要總結歸納。調整好自己的心態,使自己在任何時候鎮靜,思路有條不紊,克服浮躁的情緒。特別是對自己要有信心,永遠鼓勵自己,除了自己,誰也不能把我打倒,要有自己不垮,誰也不能打垮我的自豪感。
在考試前要做好準備,練練常規題,把自己的思路展開,切忌考前去做太難的題目。在保證正確率的前提下提高解題速度。對于一些容易的基礎題要有十二分把握拿全分;對于一些難題,也要盡量拿分,考試中要學會嘗試得分,使自己的水平正常甚至超常發揮。
由此可見,要把數學學好就得找到適合自己的學習方法,了解數學學科的特點,使自己進入數學的廣闊天地中去。
最后,還是要多練多問,多積累,而且要多總結,數學是一個見效很快的學科,只要努力成績很快就長上來了。
高中數學的學習方法15
高中數學學習方法:其實就是學習解題
高中數學是應用性很強的學科,學習數學就是學習解題。搞題海戰術的方式、方法固然是不對的,但離開解題來學習數學同樣也是錯誤的。其中的關鍵在于對待題目的態度和處理解題的方式上。
1、首先是精選題目,做到少而精。
只有解決質量高的、有代表性的題目才能達到事半功倍的效果。然而絕大多數的同學還沒有辨別、分析題目好壞的能力,這就需要在老師的指導下來選擇復習的練習題,以了解高考題的形式、難度。
2、其次是分析題目。
解答任何一個數學題目之前,都要先進行分析。相對于比較難的題目,分析更顯得尤為重要。我們知道,解決數學問題實際上就是在題目的已知條件和待求結論中架起聯系的橋梁,也就是在分析題目中已知與待求之間差異的基礎上,化歸和消除這些差異。當然在這個過程中也反映出對數學基礎知識掌握的熟練程度、理解程度和數學方法的靈活應用能力。例如,許多三角方面的題目都是把角、函數名、結構形式統一后就可以解決問題了,而選擇怎樣的三角公式也是成敗的關鍵。
3、最后,題目總結。
解題不是目的,我們是通過解題來檢驗我們的學習效果,發現學習中的不足的,以便改進和提高。因此,解題后的總結至關重要,這正是我們學習的大好機會。對于一道完成的題目,有以下幾個方面需要總結:
①在知識方面,題目中涉及哪些概念、定理、公式等基礎知識,在解題過程中是如何應用這些知識的。
②在方法方面:如何入手的,用到了哪些解題方法、技巧,自己是否能夠熟練掌握和應用。
③能不能把解題過程概括、歸納成幾個步驟(比如用數學歸納法證明題目就有很明顯的三個步驟)。
④能不能歸納出題目的類型,進而掌握這類題目的解題通法(我們反對老師把現成的題目類型給學生,讓學生拿著題目套類型,但我們鼓勵學生自己總結、歸納題目類型)。
【摘要】“高中數學多邊形內角和公式”數學公式是解題的要點,要靈活運用,希望下面公式為大家帶來幫助:
設多邊形的邊數為N
則其內角和=(N-2)*180°
因為N個頂點的N個外角和N個內角的和
=N*180°
(每個頂點的一個外角和相鄰的內角互補)
所以N邊形的外角和
=N*180°-(N-2)*180°
=N*180°-N*180°+360°
=360°
即N邊形的外角和等于360°
設多邊形的邊數為N
則其外角和=360°
因為N個頂點的N個外角和N個內角的和
=N*180°
(每個頂點的一個外角和相鄰的內角互補)
所以N邊形的內角和
=N*180°-360°
=N*180°-2*180°
=(N-2)*180°
即N邊形的內角和等于(N-2)*180°
如何學好數學
首先和敏捷對于來說固然重要,但良好的可以把效果提高幾倍,這是先天因素不可比擬的。學好首先要過的是關。任何事情都有一個由量變到質變的循序漸進的積累過程。
一.。不等于瀏覽。要深入了解內容,找出重點,難點,疑點,經過思考,標出不懂的,有益于抓住重點,還可以培養自學,有時間還可以超前學習。
二.聽講。核心在。1。以聽為主,兼顧記錄。2。注重過程,輕結論。
3.有重點。4。提高聽課。
三.。像演電影一樣把課堂,整理筆記,
四.多做練習。1。晚上吃飯后,坐到書桌時,看數學最適合,2。做一道數學題,每一步都要多問個別為什么,不能只滿足于課堂上的灌輸式傳授和書本上的簡單講述,要想提高必須要一步一步推 高中歷史,一步一步想,每個過程都必不可少,3。不要粗心大意,4。做完每一道題,要想想為什么會想到這樣做,建立一種條件發射,關鍵在于每做一道題要從中得到東西,錯在哪,5。解題都有固定的套路。6還有大膽的夸獎自己,那是樹立信心的關鍵時刻,
五.總結。1。要將所學的知識變成知識網,從大主干到分枝,清晰地深存在腦中,新題想到老題,從而一通百通。2。建立錯誤集,錯誤多半會錯上兩次,在有意識改正的情況下,還有可能錯下去,最有效的應該是會正確地做這道題,并在下次遇到同樣情況時候有注意的意識。3。周末再將一周做的題回頭看一番,提出每道題的思路方法。4有問題一定要問。
六.考前復習,1。前2周就要開始復習,做到心中有數,否則會影響發揮,再做一遍以前的錯題是十分必要的,據說有一個同學平時只有一百零幾,離只有一個月,把以前錯題從頭做一遍,最后他數學居然得了147分。2。要重視基礎,
另外,聽老師的話,勤學苦練不可少,沒有捷徑,要樂觀,有毅力,要有決心,還要有耐心,學數學是一個很長的過程,你的努力于回報往往不能那么盡如人意的成正比,甚至會有下坡路的趨勢,但只要堅持下去,那條成績線會抬起頭來,一定能看到光明。
《希臘文集》中的方程問題
《希臘文集》是一本用詩歌寫成的問題集,主要是六韻腳詩。荷馬著名的長詩《伊麗亞特》和《奧德賽》就是用這種詩體寫成的。
《希臘文集》中有一道關于畢達哥拉斯的問題。畢達哥拉斯是古希臘著名數學家,生活在公元前六世紀。問題是:一個人問:“尊敬的畢達哥拉斯,請告訴我,有多少學生在你的學校里聽你講課?”畢達哥拉斯回答說:“一共有這么多學生在聽課,其中 在學習數學, 學習音樂, 沉默無言,此外,還有3名婦女。”
我們用現代方法來解:設聽課的學生有x人,根據題目條件可列出方程
這是一個一元一次方程。
移項,得
答:畢達哥拉斯有28名學生聽課。
《希臘文集》中還有一些用童話形式寫成的數學題。比如“驢和騾子馱貨物”這道題,就曾經被大數學家歐拉改編過。題目是這樣的:
“驢和騾子馱著貨物并排走在路上。驢不住地往地埋怨自己馱的貨物太重,壓得受不了。騾子對驢說:‘你發什么牢騷啊!我馱得的貨物比你重。假若你的貨物給我一口袋,我馱的貨就比你馱的重一倍,而我若給你一口袋,咱倆馱和的才一樣多。’問驢和騾子各馱幾口袋貨物?”
這個問題可以用方程組來解:
設驢馱x口袋,騾子馱y口袋。則驢給騾子一口袋后,驢還剩x-1,騾子成了y+1,這時騾子馱的是驢的二倍,所以有
2(x-1)=y+1 (1)
又因為騾子給驢一口袋后,騾子還剩下y-1,驢成了x+1,此時騾子和驢馱的相等,有
x+1=y-1 (2)
(1)與(2)聯立,有
這是一個二元一次議程組。
(1)-(2)得 x-3=2,
x=5 (3)
將(3)代入(2),得y=7。
答:驢原來馱5口袋,騾子原來馱7口袋。
《希臘文集》有一道名的題目“愛神的煩惱”。這里有許多神的名字,先介紹一下:愛羅斯是希臘神話中的愛神,吉波莉達是賽浦路斯島的.守護神。9位文藝女神中,葉芙特爾波管簡樂,愛拉托管愛情詩,達利婭管吉劇,特希霍拉管舞蹈,美利波美娜管悲劇,克里奧管歷史,波利尼婭管頌歌,烏拉尼婭管天文,卡利奧帕管史詩。
這道題也是用詩歌形式寫在的:
愛羅斯在路旁哭泣,
淚水一滴接一滴。
吉波莉達向前問道:波利尼
“是什么事情使你如此傷悲?
我可能夠幫助你?”
愛羅斯回答道:
“九位文藝女神
不知來自何方
把我從赫爾康山采回的蘋果,
幾乎一掃而光,
葉芙特爾波飛快地搶走十二分之一,
愛拉托搶得更多——
七個蘋果中拿走一個。
八分之一被達利婭搶走,
比這多一倍的蘋果落入特希霍拉之手。
美利波美娜最是客氣,
只取走二十分之一。
可又來了克里奧,
她的收獲比這多四倍。
還有三位女神,
個個都不空手,
30個歸波利尼婭,
120個歸烏拉尼婭,
300個歸卡利奧帕。
我,可憐的愛羅斯。
愛羅斯原有多少個蘋果?還剩下50個蘋果。”
設愛羅斯原來有x個蘋果,則6位文藝女神搶走的蘋果分別是 。
可列出方程
答:愛羅斯原來有蘋果3360個。
選自《中學生數學》20xx年5月下
20xx高考數學復習三步曲
編者按:小編為大家收集了“20xx高考數學復習三步曲”,供大家參考,希望對大家有所幫助!
今年高考文理科的數學試卷總體難度不大,為師生所接受。文科試卷難易程度適中,尤其是填空題和選擇題難度不大,解答題難易程度和試題坡度安排都比較合理,有利于考生的發揮,也有利于指導以后的學習。
理科試卷容易題、中等題和難題比例恰當,注重邏輯思維能力和表達能力(運用數學符號)以及數形結合能力的考查,部分試題新而不難,開放題有所體現,把能力的考查落到實處。但我個人認為,今年試卷對高中數學的主干知識的核心內容考查不到位,但不等于我們今后可以完全不重視。
抓基礎:不變應萬變
把基礎知識和基本技能落到實處。唯有如此才能以不變應萬變。比如,文科第22題是一道經典題型,考查圓錐曲線上一點到定點距離,既考老師又考學生。所謂考老師是說這樣的題型你講過沒有,是怎么講的?學生的典型錯誤(以定點為圓心作一個與橢圓相切的圓,再利用判別式等于0)是怎么糾正?正確解法(轉化為二次函數在某個區間上的最值)是怎么想到的?只有經過這樣的教學環節,學生才能真正理解。所謂考學生是說你自己做錯了,老師重點講評了的經典問題,你掌握了沒有?掌握的標準是能否順利解答相應的變式問題。由于第(3)含有參數,需要分類討論,能有效甄別考生的思維水平和運算能力。本題以橢圓(解析幾何重點內容之一)為載體,考查把幾何問題轉化為代數問題的能力(這是解析幾何的核心思想),以及含參數的二次函數求最值問題(也是代數中的重點和難點),一舉多得。
當然,可能會有人認為這道題形式不新,其實,要求考題全新既無必要,也不可能,只要有利于高校選拔和中學教學就好,不必過分求新、求異。
理科的第22題相對較難,不少同學反映不好表述。若能從集合的包含關系這個角度考慮,則容易表述,部分考生是直接對兩個數列進行分類,由于要用到一些多數學生不熟悉的整除知識,因而感到困難,無法下手。這就體現基礎知識和基本技能的重要性。
盡管今年理科試卷在知識點分布上有些不盡如人意,但復習不能受此影響,仍然要全面、扎實復習,不能留下知識點的死角,相應的技能、技巧要牢固掌握,思想方法都要總結到位,這樣才能“不管風吹浪打,勝似閑庭信步”。
破難題:提升應對力
如何應對“題梗阻”?考試中遇到不會做的題目很正常,有些同學會因此影響臨場發揮。考生進考場就像運動員進運動場,心理素質很重要,把心理輔導和答題技巧融于學習之中。在高三復習過程中,不僅要講數學知識,同時還要訓練學生的心理素質和培養學生的答題技巧,這樣才能使學生在考場上應付裕如,出色發揮,考出好成績。
理科的22題第(2)卡住不少考生,耽誤時間還影響心情,以致第(3)和后面第23題來不及或無心去做,其實,做第(3)題用不到第(2)的結論。而第23題是新編的開放性問題,首先要靜心才能讀懂題目,而讀懂題目至少第(1)、(2)兩題不難。要做到這些并不容易,不是臨考前“先易后難”一句話學生就能做到,需要在平時教學過程中結合具體問題,訓練學生的心理素質,提高其在解題過程中遇到困難時的應變能力,掌握應變策略,才能在考場上“敢于放棄”,從容跳過不會做的題或在解答題中跳步解答,把自己能做的題目先做對,把應得的分得到,這樣考試總是成功的,無論分數高低。
為何時間與成績不成正比?高三數學就是大量解題,有些重點中學的優秀學生的高考成績甚至不比高二時考分高,豈不是白學?其實,這是誤解。數學講究邏輯,問題從哪里來(已知),到哪里去(求證),中間有哪些溝溝坎坎(思維障礙),怎么克服(怎樣進行等價轉化),不僅是照葫蘆畫瓢的操作性(當然也是必要的)訓練,更重要的是以數學知識為載體,讓學生學會思考問題的方式方法,還要在解題后對問題作歸納總結,找出規律,有時還要把問題作適當推廣,把學生的邏輯思維引到辯證思維。這樣經過一年的高三數學學習,學生收獲的不僅是分數,還有對人終生受用的思維品質的提高。
重方法:培養好品質
有些同學做了許多題,就是成績提高不見提高,自己和家長都很納悶。其實學習數學關鍵是要掌握方法,同時還要培養敢于做難題、新題的膽量和毅力。重復性操作的題目做再多,意義也不大。對待難題的態度是培養學生意志品質的好時機,不能輕易錯過(當然也要因人而異)。有些同學往往認為只要弄懂思路,不必解到底。其實,這樣的同學往往眼高手低,會而不對,考試成績忽高忽低,原因在于某些細節處理不當,造成“一失足成千古恨”,事后以粗心搪塞過去。這就需要老師對學生深入了解,結合具體問題給予悉心指導,幫助學生找出真實原因,并制定改正錯誤的辦法,這一過程表面上是幫助學生學會解題,實際上對學生意志品質的培養也就潛移默化地得到了落實。
我們有理由相信,把解題和人的素質培養有機結合的高三數學教學,不僅能提高學生的解題能力,還能促使他們健康成長,讓我們一起努力!
以上就是為大家提供的“20xx高考數學復習三步曲”希望能對考生產生幫助,更多資料請咨詢中考頻道。
生物數學概論
生物數學是生物學與數學之間的邊緣學科。它以數學方法研究和解決生物學問題,并對與生物學有關的數學方法進行理論研究。
生物數學的分支學科較多,從生物學的應用去劃分,有數量分類學、數量遺傳學、數量生態學、數量生理學和生物力學等;從研究使用的數學方法劃分,又可分為生物統計學、生物信息論、生物系統論、生物控制論和生物方程等分支。這些分支與前者不同,它們沒有明確的生物學研究對象,只研究那些涉及生物學應用有關的數學方法和理論。
生物數學具有豐富的數學理論基礎,包括集合論、概率論、統計數學、對策論、微積分、微分方程、線性代數、矩陣論和拓撲學,還包括一些近代數學分支,如信息論、圖論、控制論、系統論和模糊數學等。
由于生命現象復雜,從生物學中提出的數學問題往往十分復雜,需要進行大量計算工作。因此,計算機是研究和解決生物學問題的重要工具。然而就整個學科的內容而論,生物數學需要解決和研究的本質方面是生物學問題,數學和電腦僅僅是解決問題的工具和手段。因此,生物數學與其他生物邊緣學科一樣通常被歸屬于生物學而不屬于數學。
生命現象數量化的方法,就是以數量關系描述生命現象。數量化是利用數學工具研究生物學的前提。生物表現性狀的數值表示是數量化的一個方面。生物內在的或外表的,個體的或群體的,器官的或細胞的,直到分子水平的各種表現性狀,依據性狀本身的生物學意義,用適當的數值予以描述。
數量化的實質就是要建立一個集合函數,以函數值來描述有關集合。傳統的集合概念認為一個元素屬于某集合,非此即彼、界限分明。可是生物界存在著大量界限不明確的模糊現象,而集合概念的明確性不能貼切地描述這些模糊現象,給生命現象的數量化帶來困難。1965年扎德提出模糊集合概念,模糊集合適合于描述生物學中許多模糊現象,為生命現象的數量化提供了新的數學工具。以模糊集合為基礎的模糊數學已廣泛應用于生物數學。
數學模型是能夠表現和描述真實世界某些現象、特征和狀況的數學系統。數學模型能定量地描述生命物質運動的過程,一個復雜的生物學問題借助數學模型能轉變成一個數學問題,通過對數學模型的邏輯推理、求解和運算,就能夠獲得客觀事物的有關結論,達到對生命現象進行研究的目的。
比如描述生物種群增長的費爾許爾斯特-珀爾方程,就能夠比較正確的表示種群增長的規律;通過描述捕食與被捕食兩個種群相克關系的洛特卡-沃爾泰拉方程,從理論上說明:農藥的濫用,在毒殺害蟲的同時也殺死了害蟲的天敵,從而常常導致害蟲更猖獗地發生等。
還有一類更一般的方程類型,稱為反應擴散方程的數學模型在生物學中廣為應用,它與生理學、生態學、群體遺傳學、醫學中的流行病學和藥理學等研究有較密切的關系。60年代,普里戈任提出著名的耗散結構理論,以新的觀點解釋生命現象和生物進化原理,其數學基礎亦與反應擴散方程有關。
由于那些片面的、孤立的、機械的研究方法不能完全滿足生物學的需要,因此,在非生命科學中發展起來的數學,在被利用到生物學的研究領域時就需要從事物的多方面,在相互聯系的水平上進行全面的研究,需要綜合分析的數學方法。
多元分析就是為適應生物學等多元復雜問題的需要、在統計學中分化出來的一個分支領域,它是從統計學的角度進行綜合分析的數學方法。多元統計的各種矩陣運算,體現多種生物實體與多個性狀指標的結合,在相互聯系的水平上,綜合統計出生命活動的特點和規律性。
生物數學中常用的多元分析方法有回歸分析、判別分析、聚類分析、主成分分析和典范分析等。生物學家常常把多種方法結合使用,以期達到更好的綜合分析效果。
多元分析不僅對生物學的理論研究有意義,而且由于原始數據直接來自生產實踐和科學實驗,有很大的實用價值。在農、林業生產中,對品種鑒別、系統分類、情況預測、生產規劃以及生態條件的分析等,都可應用多元分析方法。醫學方面的應用,多元分析與電腦的結合已經實現對疾病的診斷,幫助醫生分析病情,提出治療方案。
系統論和控制論是以系統和控制的觀點,進行綜合分析的數學方法。系統論和控制論的方法沒有把那些次要的因素忽略,也沒有孤立地看待每一個特性,而是通過狀態方程把錯綜復雜的關系都結合在一起,在綜合的水平上進行全面分析。對系統的綜合分析也可以就系統的可控性、可觀測性和穩定性作出判斷,更進一步揭示該系統生命活動的特征。
在系統和控制理論中,綜合分析的特點還表現在把輸出和狀態的變化反饋對系統的影響,即反饋關系也考慮在內。生命活動普遍存在反饋現象,許多生命過程在反饋條件的制約下達到平衡,生命得以維持和延續。對系統的控制常常靠反饋關系來實現。
生命現象常常以大量、重復的形式出現,又受到多種外界環境和內在因素的隨機干擾。因此概率論和統計學是研究生物學經常使用的方法。生物統計學是生物數學發展最早的一個分支,各種統計分析方法已經成為生物學研究工作和生產實踐的常規手段。
概率與統計方法的應用還表現在隨機數學模型的研究中。原來數學模型可分為確定模型和隨機模型兩大類如果模型中的變量由模型完全確定,這是確定模型;與之相反,變量出現隨機性變化不能完全確定,稱為隨機模型。又根據模型中時間和狀態變量取值的連續或離散性,有連續模型和離散模型之分。前述幾個微分方程形式的模型都是連續的、確定的數學模型。這種模型不能描述帶有隨機性的生命現象,它的應用受到限制。因此隨機模型成為生物數學不可缺少的部分。
60年代末,法國數學家托姆從拓撲學提出一種幾何模型,能夠描繪多維不連續現象,他的理論稱為突變理論。生物學中許多處于飛躍的、臨界狀態的不連續現象,都能找到相應的躍變類型給予定性的解釋。躍變論彌補了連續數學方法的不足之處,現在已成功地應用于生理學、生態學、心理學和組織胚胎學。對神經心理學的研究甚至已經指導醫生應用于某些疾病的臨床治療。
繼托姆之后,躍變論不斷地發展。例如塞曼又提出初級波和二級波的新理論。躍變理論的新發展對生物群落的分布、傳染疾病的蔓延、胚胎的發育等生物學問題賦予新的理解。
上述各種生物數學方法的應用,對生物學產生重大影響。20世紀50年代以來,生物學突飛猛進地發展,多種學科向生物學滲透,從不同角度展現生命物質運動的矛盾,數學以定量的形式把這些矛盾的實質體現出來。從而能夠使用數學工具進行分析;能夠輸入電腦進行精確的運算;還能把來自名方面的因素聯系在一起,通過綜合分析闡明生命活動的機制。
總之,數學的介入把生物學的研究從定性的、描述性的水平提高到定量的、精確的、探索規律的高水平。生物數學在農業、林業、醫學,環境科學、社會科學和人口控制等方面的應用,已經成為人類從事生產實踐的手段。
數學在生物學中的應用,也促使數學向前發展。實際上,系統論、控制論和模糊數學的產生以及統計數學中多元統計的興起都與生物學的應用有關。從生物數學中提出了許多數學問題,萌發出許多數學發展的生長點,正吸引著許多數學家從事研究。它說明,數學的應用從非生命轉向有生命是一次深刻的轉變,在生命科學的推動下,數學將獲得巨大發展。
當今的生物數學仍處于探索和發展階段,生物數學的許多方法和理論還很不完善,它的應用雖然取得某些成功,但仍是低水平的、粗略的、甚至是勉強的。許多更復雜的生物學問題至今未能找到相應的數學方法進行研究。因此,生物數學還要從生物學的需要和特點,探求新方法、新手段和新的理論體系,還有待發展和完善。
20xx年高考數學命題預測之立體幾何
【編者按】近幾年高考立體幾何試題以基礎題和中檔題為主,熱點問題主要有證明點線面的關系,如點共線、線共點、線共面問題;證明空間線面平行、垂直關系;求空間的角和距離;利用空間向量,將空間中的性質及位置關系的判定與向量運算相結合,使幾何問題代數化等等。考查的重點是點線面的位置關系及空間距離和空間角,突出空間想象能力,側重于空間線面位置關系的定性與定量考查,算中有證。其中選擇、填空題注重幾何符號語言、文字語言、圖形語言三種語言的相互轉化,考查學生對圖形的識別、理解和加工能力;解答題則一般將線面集中于一個幾何體中,即以一個多面體為依托,設置幾個小問,設問形式以證明或計算為主。
20xx年高考中立體幾何命題有如下特點:
1.線面位置關系突出平行和垂直,將側重于垂直關系。
2.多面體中線面關系論證,空間“角”與“距離”的計算常在解答題中綜合出現。
3.多面體及簡單多面體的概念、性質多在選擇題,填空題出現。
4.有關三棱柱、四棱柱、三棱錐的問題,特別是與球有關的問題將是高考命題的熱點。
此類題目分值一般在17---22分之間,題型一般為1個選擇題,1個填空題,1個解答題
【高中數學的學習方】相關文章:
高中數學的學習技巧02-10
高中數學的學習方法11-17
高中數學的學習方法04-10
高中數學的學習方法05-17
高中數學學習技巧02-11
[經典]高中數學學習方法07-16
高中數學學習的指導方法06-27
[優]高中數學的學習方法11-10
高中數學學習技巧分享02-17
高中數學學習方法11-24