<delect id="sj01t"></delect>
  1. <em id="sj01t"><label id="sj01t"></label></em>
  2. <div id="sj01t"></div>
    1. <em id="sj01t"></em>

            <div id="sj01t"></div>

            三八婦女節征文優秀

            時間:2025-12-15 22:12:28 初三作文 我要投稿

            2017三八婦女節征文優秀范文

              一、數與代數A、數與式:1、有理數:①整數→正整數/0/負整數②分數→正分數/負分數

            2017三八婦女節征文優秀范文

              數軸:

              ①畫一條水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規定直線上向右的方向為正方向,就得到數軸。

              ②任何一個有理數都可以用數軸上的一個點來表示。

              ③如果兩個數只有符號不同,那么我們稱其中一個數為另外一個數的相反數,也稱這兩個數互為相反數。在數軸上,表示互為相反數的兩個點,位于原點的兩側,并且與原點距離相等。

              ④數軸上兩個點表示的數,右邊的總比左邊的大。正數大于0,負數小于0,正數大于負數。

              絕對值:

              ①在數軸上,一個數所對應的點與原點的距離叫做該數的絕對值。

              ②正數的絕對值是他的本身、負數的絕對值是他的相反數、0的絕對值是0。兩個負數比較大小,絕對值大的反而小。

              有理數的運算:加法:

              ①同號相加,取相同的符號,把絕對值相加。

              ②異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數的符號,并用較大的絕對值減去較小的絕對值。

              ③一個數與0相加不變。

              減法:減去一個數,等于加上這個數的相反數。

              乘法:

              ①兩數相乘,同號得正,異號得負,絕對值相乘。

              ②任何數與0相乘得0。

              ③乘積為1的兩個有理數互為倒數。

              除法:

              ①除以一個數等于乘以一個數的倒數。

              ②0不能作除數。

              乘方:求N個相同因數A的積的運算叫做乘方,乘方的結果叫冪,A叫底數,N叫次數。

              混合順序:先算乘法,再算乘除,最后算加減,有括號要先算括號里的。

              2、實數 無理數:無限不循環小數叫無理數

              平方根:

              ①如果一個正數X的平方等于A,那么這個正數X就叫做A的算術平方根。

              ②如果一個數X的平方等于A,那么這個數X就叫做A的平方根。

              ③一個正數有2個平方根/0的平方根為0/負數沒有平方根。

              ④求一個數A的平方根運算,叫做開平方,其中A叫做被開方數。

              立方根:

              ①如果一個數X的立方等于A,那么這個數X就叫做A的立方根。

              ②正數的立方根是正數、0的立方根是0、負數的立方根是負數。

              ③求一個數A的立方根的運算叫開立方,其中A叫做被開方數。

              實數:

              ①實數分有理數和無理數。

              ②在實數范圍內,相反數,倒數,絕對值的意義和有理數范圍內的相反數,倒數,絕對值的意義完全一樣。

              ③每一個實數都可以在數軸上的一個點來表示。

              3、代數式

              代數式:單獨一個數或者一個字母也是代數式。

              合并同類項:①所含字母相同,并且相同字母的指數也相同的項,叫做同類項。②把同類項合并成一項就叫做合并同類項。③在合并同類項時,我們把同類項的系數相加,字母和字母的指數不變。

              4、整式與分式

              整式:

              ①數與字母的乘積的代數式叫單項式,幾個單項式的和叫多項式,單項式和多項式統稱整式。

              ②一個單項式中,所有字母的指數和叫做這個單項式的次數。

              ③一個多項式中,次數最高的項的次數叫做這個多項式的次數。

              整式運算:加減運算時,如果遇到括號先去括號,再合并同類項。

              冪的運算:AM+AN=A(M+N)

              (AM)N=AMN

              (A/B)N=AN/BN 除法一樣。

              整式的乘法:

              ①單項式與單項式相乘,把他們的系數,相同字母的冪分別相乘,其余字母連同他的指數不變,作為積的因式。

              ②單項式與多項式相乘,就是根據分配律用單項式去乘多項式的每一項,再把所得的積相加。

              ③多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。

              公式兩條:平方差公式/完全平方公式

              整式的除法:

              ①單項式相除,把系數,同底數冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同他的指數一起作為商的一個因式。

              ②多項式除以單項式,先把這個多項式的每一項分別除以單項式,再把所得的商相加。

              分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式。

              方法:提公因式法、運用公式法、分組分解法、十字相乘法。

              分式:

              ①整式A除以整式B,如果除式B中含有分母,那么這個就是分式,對于任何一個分式,分母不為0。

              ②分式的分子與分母同乘以或除以同一個不等于0的整式,分式的值不變。

              分式的運算:

              乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。

              除法:除以一個分式等于乘以這個分式的倒數。

              加減法:

              ①同分母分式相加減,分母不變,把分子相加減。

              ②異分母的分式先通分,化為同分母的分式,再加減。

              分式方程:

              ①分母中含有未知數的方程叫分式方程。

              ②使方程的分母為0的解稱為原方程的增根。

              B、方程與不等式

              1、方程與方程組

              一元一次方程:

              ①在一個方程中,只含有一個未知數,并且未知數的指數是1,這樣的方程叫一元一次方程。

              ②等式兩邊同時加上或減去或乘以或除以(不為0)一個代數式,所得結果仍是等式。

              解一元一次方程的步驟:去分母,移項,合并同類項,未知數系數化為1。

              二元一次方程:含有兩個未知數,并且所含未知數的項的次數都是1的方程叫做二元一次方程。

              二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。

              適合一個二元一次方程的一組未知數的值,叫做這個二元一次方程的一個解。

              二元一次方程組中各個方程的公共解,叫做這個二元一次方程的解。

              解二元一次方程組的方法:代入消元法/加減消元法。

              一元二次方程:只有一個未知數,并且未知數的項的最高系數為2的方程

              1)一元二次方程的二次函數的關系

              大家已經學過二次函數(即拋物線)了,對他也有很深的了解,好像解法,在圖象中表示等等,其實一元二次方程也可以用二次函數來表示,其實一元二次方程也是二次函數的一個特殊情況,就是當Y的0的時候就構成了一元二次方程了。那如果在平面直角坐標系中表示出來,一元二次方程就是二次函數中,圖象與X軸的交點。也就是該方程的解了

              2)一元二次方程的解法

              大家知道,二次函數有頂點式(-b/2a,4ac-b2/4a),這大家要記住,很重要,因為在上面已經說過了,一元二次方程也是二次函數的一部分,所以他也有自己的一個解法,利用他可以求出所有的一元一次方程的解

              (1)配方法

              利用配方,使方程變為完全平方公式,在用直接開平方法去求出解

              (2)分解因式法

              提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時候也一樣,利用這點,把方程化為幾個乘積的形式去解

              (3)公式法

              這方法也可以是在解一元二次方程的萬能方法了,方程的根X1={-b+√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a

              3)解一元二次方程的步驟:

              (1)配方法的步驟:

              先把常數項移到方程的右邊,再把二次項的系數化為1,再同時加上1次項的系數的一半的平方,最后配成完全平方公式

              (2)分解因式法的步驟:

              把方程右邊化為0,然后看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式

              (3)公式法

              就把一元二次方程的各系數分別代入,這里二次項的系數為a,一次項的系數為b,常數項的系數為c

              4)韋達定理

              利用韋達定理去了解,韋達定理就是在一元二次方程中,二根之和=-b/a,二根之積=c/a

              也可以表示為x1+x2=-b/a,x1x2=c/a。利用韋達定理,可以求出一元二次方程中的各系數,在題目中很常用

              5)一元一次方程根的情況

              利用根的判別式去了解,根的判別式可在書面上可以寫為“△”,讀作“diao ta”,而△=b2-4ac,這里可以分為3種情況:

              I當△>0時,一元二次方程有2個不相等的實數根;

              II當△=0時,一元二次方程有2個相同的實數根;

              III當△<0時,一元二次方程沒有實數根(在這里,學到高中就會知道,這里有2個虛數根)

              2、不等式與不等式組

              不等式:

              ①用符號〉,=,〈號連接的式子叫不等式。

              ②不等式的兩邊都加上或減去同一個整式,不等號的方向不變。

              ③不等式的兩邊都乘以或者除以一個正數,不等號方向不變。

              ④不等式的兩邊都乘以或除以同一個負數,不等號方向相反。

              不等式的解集:

              ①能使不等式成立的未知數的值,叫做不等式的解。

              ②一個含有未知數的不等式的所有解,組成這個不等式的解集。

              ③求不等式解集的過程叫做解不等式。

              一元一次不等式:左右兩邊都是整式,只含有一個未知數,且未知數的最高次數是1的不等式叫一元一次不等式。

              一元一次不等式組:

              ①關于同一個未知數的幾個一元一次不等式合在一起,就組成了一元一次不等式組。

              ②一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。

              ③求不等式組解集的過程,叫做解不等式組。

              一元一次不等式的符號方向:

              在一元一次不等式中,不像等式那樣,等號是不變的,他是隨著你加或乘的運算改變。

              在不等式中,如果加上同一個數(或加上一個正數),不等式符號不改向;例如:A>B,A+C>B+C

              在不等式中,如果減去同一個數(或加上一個負數),不等式符號不改向;例如:A>B,A-C>B-C

              在不等式中,如果乘以同一個正數,不等號不改向;例如:A>B,A*C>B*C(C>0)

              在不等式中,如果乘以同一個負數,不等號改向;例如:A>B,A*C

              如果不等式乘以0,那么不等號改為等號

              所以在題目中,要求出乘以的數,那么就要看看題中是否出現一元一次不等式,如果出現了,那么不等式乘以的數就不等為0,否則不等式不成立;

              3、函數

              變量:因變量,自變量。

              在用圖象表示變量之間的關系時,通常用水平方向的數軸上的點自變量,用豎直方向的數軸上的點表示因變量。

              一次函數:

              ①若兩個變量X,Y間的關系式可以表示成Y=KX+B(B為常數,K不等于0)的形式,則稱Y是X的一次函數。

              ②當B=0時,稱Y是X的正比例函數。

              一次函數的圖象:

              ①把一個函數的自變量X與對應的因變量Y的值分別作為點的橫坐標與縱坐標,在直角坐標系內描出它的對應點,所有這些點組成的圖形叫做該函數的圖象。

              ②正比例函數Y=KX的圖象是經過原點的一條直線。

              ③在一次函數中,當K〈0,B〈O,則經234象限;當K〈0,B〉0時,則經124象限;當K〉0,B〈0時,則經134象限;當K〉0,B〉0時,則經123象限。

              ④當K〉0時,Y的值隨X值的增大而增大,當X〈0時,Y的值隨X值的增大而減少。

            【三八婦女節征文優秀】相關文章:

            精選三八婦女節征文15篇03-01

            三八婦女節主題征文(通用19篇)03-04

            最新三八婦女節征文(通用10篇)03-08

            幸福懷仁征文優秀范文10-06

            我的家風家訓征文優秀08-22

            筑夢路上優秀征文08-10

            優秀反洗錢征文10-24

            我的心愿作文優秀征文07-01

            三八婦女節讀書征文800字(精選18篇)03-08

            三八婦女節的征文范文300字(通用15篇)03-08

            • 相關推薦
            <delect id="sj01t"></delect>
            1. <em id="sj01t"><label id="sj01t"></label></em>
            2. <div id="sj01t"></div>
              1. <em id="sj01t"></em>

                      <div id="sj01t"></div>
                      黄色视频在线观看