<delect id="sj01t"></delect>
  1. <em id="sj01t"><label id="sj01t"></label></em>
  2. <div id="sj01t"></div>
    1. <em id="sj01t"></em>

            <div id="sj01t"></div>

            高一數學知識點總結

            時間:2020-08-29 12:46:46 學習總結 我要投稿

            高一數學集合知識點總結

              一.知識歸納:

            高一數學集合知識點總結

              1.集合的有關概念。

              1)集合(集):某些指定的對象集在一起就成為一個集合(集).其中每一個對象叫元素

              注意:①集合與集合的元素是兩個不同的概念,教科書中是通過描述給出的,這與平面幾何中的點與直線的概念類似。

              ②集合中的元素具有確定性(a?A和a?A,二者必居其一)、互異性(若a?A,b?A,則a≠b)和無序性({a,b}與{b,a}表示同一個集合)。

              ③集合具有兩方面的意義,即:凡是符合條件的對象都是它的元素;只要是它的元素就必須符號條件

              2)集合的表示方法:常用的有列舉法、描述法和圖文法

              3)集合的`分類:有限集,無限集,空集。

              4)常用數集:N,Z,Q,R,N*

              2.子集、交集、并集、補集、空集、全集等概念。

              1)子集:若對x∈A都有x∈B,則A B(或A B);

              2)真子集:A B且存在x0∈B但x0 A;記為A B(或 ,且 )

              3)交集:A∩B={x| x∈A且x∈B}

              4)并集:A∪B={x| x∈A或x∈B}

              5)補集:CUA={x| x A但x∈U}

              注意:①? A,若A≠?,則? A ;

              ②若 , ,則 ;

              ③若 且 ,則A=B(等集)

              3.弄清集合與元素、集合與集合的關系,掌握有關的術語和符號,特別要注意以下的符號:(1) 與 、?的區別;(2) 與 的區別;(3) 與 的區別。

              4.有關子集的幾個等價關系

              ①A∩B=A A B;②A∪B=B A B;③A B C uA C uB;

              ④A∩CuB = 空集 CuA B;⑤CuA∪B=I A B。

              5.交、并集運算的性質

              ①A∩A=A,A∩? = ?,A∩B=B∩A;②A∪A=A,A∪? =A,A∪B=B∪A;

              ③Cu (A∪B)= CuA∩CuB,Cu (A∩B)= CuA∪CuB;

              6.有限子集的個數:設集合A的元素個數是n,則A有2n個子集,2n-1個非空子集,2n-2個非空真子集。

              二.例題講解:

              【例1】已知集合M={x|x=m+ ,m∈Z},N={x|x= ,n∈Z},P={x|x= ,p∈Z},則M,N,P滿足關系

              A) M=N P B) M N=P C) M N P D) N P M

              分析一:從判斷元素的共性與區別入手。

              解答一:對于集合M:{x|x= ,m∈Z};對于集合N:{x|x= ,n∈Z}

              對于集合P:{x|x= ,p∈Z},由于3(n-1)+1和3p+1都表示被3除余1的數,而6m+1表示被6除余1的數,所以M N=P,故選B。

              分析二:簡單列舉集合中的元素。

              解答二:M={…, ,…},N={…, , , ,…},P={…, , ,…},這時不要急于判斷三個集合間的關系,應分析各集合中不同的元素。

              = ∈N, ∈N,∴M N,又 = M,∴M N,

              = P,∴N P 又 ∈N,∴P N,故P=N,所以選B。

              點評:由于思路二只是停留在最初的歸納假設,沒有從理論上解決問題,因此提倡思路一,但思路二易人手。

              變式:設集合 , ,則( B )

              A.M=N B.M N C.N M D.

              解:

              當 時,2k+1是奇數,k+2是整數,選B

              【例2】定義集合A*B={x|x∈A且x B},若A={1,3,5,7},B={2,3,5},則A*B的子集個數為

              A)1 B)2 C)3 D)4

              分析:確定集合A*B子集的個數,首先要確定元素的個數,然后再利用公式:集合A={a1,a2,…,an}有子集2n個來求解。

              解答:∵A*B={x|x∈A且x B}, ∴A*B={1,7},有兩個元素,故A*B的子集共有22個。選D。

              變式1:已知非空集合M {1,2,3,4,5},且若a∈M,則6?a∈M,那么集合M的個數為

              A)5個 B)6個 C)7個 D)8個

              變式2:已知{a,b} A {a,b,c,d,e},求集合A.

              解:由已知,集合中必須含有元素a,b.

              集合A可能是{a,b},{a,b,c},{a,b,d},{a,b,e},{a,b,c,d},{a,b,c,e},{a,b,d,e}.

              評析 本題集合A的個數實為集合{c,d,e}的真子集的個數,所以共有 個 .

              【例3】已知集合A={x|x2+px+q=0},B={x|x2?4x+r=0},且A∩B={1},A∪B={?2,1,3},求實數p,q,r的值。

              解答:∵A∩B={1} ∴1∈B ∴12?4×1+r=0,r=3.

              ∴B={x|x2?4x+r=0}={1,3}, ∵A∪B={?2,1,3},?2 B, ∴?2∈A

              ∵A∩B={1} ∴1∈A ∴方程x2+px+q=0的兩根為-2和1,

              ∴ ∴

              變式:已知集合A={x|x2+bx+c=0},B={x|x2+mx+6=0},且A∩B={2},A∪B=B,求實數b,c,m的值.

              解:∵A∩B={2} ∴1∈B ∴22+m?2+6=0,m=-5

              ∴B={x|x2-5x+6=0}={2,3} ∵A∪B=B ∴

              又 ∵A∩B={2} ∴A={2} ∴b=-(2+2)=4,c=2×2=4

              ∴b=-4,c=4,m=-5

              【例4】已知集合A={x|(x-1)(x+1)(x+2)>0},集合B滿足:A∪B={x|x>-2},且A∩B={x|1

              分析:先化簡集合A,然后由A∪B和A∩B分別確定數軸上哪些元素屬于B,哪些元素不屬于B。

              解答:A={x|-21}。由A∩B={x|1-2}可知[-1,1] B,而(-∞,-2)∩B=ф。

              綜合以上各式有B={x|-1≤x≤5}

              變式1:若A={x|x3+2x2-8x>0},B={x|x2+ax+b≤0},已知A∪B={x|x>-4},A∩B=Φ,求a,b。(答案:a=-2,b=0)

              點評:在解有關不等式解集一類集合問題,應注意用數形結合的方法,作出數軸來解之。

              變式2:設M={x|x2-2x-3=0},N={x|ax-1=0},若M∩N=N,求所有滿足條件的a的集合。

              解答:M={-1,3} , ∵M∩N=N, ∴N M

              ①當 時,ax-1=0無解,∴a=0 ②

              綜①②得:所求集合為{-1,0, }

              【例5】已知集合 ,函數y=log2(ax2-2x+2)的定義域為Q,若P∩Q≠Φ,求實數a的取值范圍。

              分析:先將原問題轉化為不等式ax2-2x+2>0在 有解,再利用參數分離求解。

              解答:(1)若 , 在 內有有解

              令 當 時,

              所以a>-4,所以a的取值范圍是

              變式:若關于x的方程 有實根,求實數a的取值范圍。

              解答:

              點評:解決含參數問題的題目,一般要進行分類討論,但并不是所有的問題都要討論,怎樣可以避免討論是我們思考此類問題的關鍵。

              三.隨堂演練

              選擇題

              1. 下列八個關系式①{0}= ② =0 ③ { } ④ { } ⑤{0}

              ⑥0 ⑦ {0} ⑧ { }其中正確的個數

              (A)4 (B)5 (C)6 (D)7

              2.集合{1,2,3}的真子集共有

              (A)5個 (B)6個 (C)7個 (D)8個

              3.集合A={x } B={ } C={ }又 則有

              (A)(a+b) A (B) (a+b) B (C)(a+b) C (D) (a+b) A、B、C任一個

              4.設A、B是全集U的兩個子集,且A B,則下列式子成立的是

              (A)CUA CUB (B)CUA CUB=U

              (C)A CUB= (D)CUA B=

              5.已知集合A={ }, B={ }則A =

              (A)R (B){ }

              (C){ } (D){ }

              6.下列語句:(1)0與{0}表示同一個集合; (2)由1,2,3組成的集合可表示為

              {1,2,3}或{3,2,1}; (3)方程(x-1)2(x-2)2=0的所有解的集合可表示為 {1,1,2}; (4)集合{ }是有限集,正確的是

              (A)只有(1)和(4) (B)只有(2)和(3)

              (C)只有(2) (D)以上語句都不對

              7.設S、T是兩個非空集合,且S T,T S,令X=S 那么S∪X=

              (A)X (B)T (C)Φ (D)S

              8設一元二次方程ax2+bx+c=0(a<0)的根的判別式 ,則不等式ax2+bx+c 0的解集為

              (A)R (B) (C){ } (D){ }

              填空題

              9.在直角坐標系中,坐標軸上的點的集合可表示為

              10.若A={1,4,x},B={1,x2}且A B=B,則x=

              11.若A={x } B={x },全集U=R,則A =

              12.若方程8x2+(k+1)x+k-7=0有兩個負根,則k的取值范圍是

              13設集合A={ },B={x },且A B,則實數k的取值范圍是。

              14.設全集U={x 為小于20的非負奇數},若A (CUB)={3,7,15},(CUA) B={13,17,19},又(CUA) (CUB)= ,則A B=

              解答題

              15(8分)已知集合A={a2,a+1,-3},B={a-3,2a-1,a2+1}, 若A B={-3},求實數a。

              16(12分)設A= , B= ,

              其中x R,如果A B=B,求實數a的取值范圍。

              四.習題答案

              選擇題

              1 2 3 4 5 6 7 8

              C C B C B C D D

              填空題

              9.{(x,y) } 10.0, 11.{x ,或x 3} 12.{ } 13.{ } 14.{1,5,9,11}

              解答題

              15.a=-1

              16.提示:A={0,-4},又A B=B,所以B A

              (Ⅰ)B= 時, 4(a+1)2-4(a2-1)<0,得a<-1

              (Ⅱ)B={0}或B={-4}時, 0 得a=-1

              (Ⅲ)B={0,-4}, 解得a=1

              綜上所述實數a=1 或a -1

            【高一數學集合知識點總結】相關文章:

            初中數學知識點總結08-25

            考研數學必備知識點總結08-14

            高一化學必修二知識點總結08-30

            高一化學必修一知識點總結08-30

            高一物理必修二知識點總結08-29

            高一物理必修一知識點總結08-27

            初二數學上冊知識點總結08-26

            考研數學高數重要知識點總結05-21

            高一數學學習方法總結10-08

            高一暑假數學作業08-08

            <delect id="sj01t"></delect>
            1. <em id="sj01t"><label id="sj01t"></label></em>
            2. <div id="sj01t"></div>
              1. <em id="sj01t"></em>

                      <div id="sj01t"></div>
                      黄色视频在线观看