<delect id="sj01t"></delect>
  1. <em id="sj01t"><label id="sj01t"></label></em>
  2. <div id="sj01t"></div>
    1. <em id="sj01t"></em>

            <div id="sj01t"></div>

            三角函數數學手抄報

            時間:2025-10-06 19:39:29 板報大全

            三角函數數學手抄報

              導語:三角函數反函數,實質就是求角度,先求三角函數值,再判角取值范圍。利用直角三角形,形象直觀好換名,簡單三角的方程,化為最簡求解集。以下是小編分享給大家的三角函數數學手抄報,文章僅供大家的參考!

            三角函數數學手抄報

              和差角公式

              sin(A+B)=sinAcosB+cosAsinB

              sin(A-B)=sinAcosB - sinBcosA

              cos(A+B)=cosAcosB - sinAsinB

              cos(A-B)=cosAcosB + sinAsinB

              tan(A+B)=(tanA+tanB)/(1-tanAtanB)

              tan(A-B)=(tanA-tanB)/(1+tanAtanB)

              cot(A+B)=(cotAcotB-1)/(cotB+cotA)

              cot(A-B)=(cotAcotB+1)/(cotB-cotA)

              倍角公式

              tan2A=2tanA/(1-tan^2A) ;cot2A=(cot^2A-1)/2cota

              cos2a=cos^2a-sin^2a=2cos^2a-1=1-2sin^2a

              sin2A=2sinAcosA=2/(tanA+cotA)

              另:sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0

              cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及

              sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2

              tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0

              四倍角公式:

              sin4A=-4*(cosA*sinA*(2*sinA^2-1))

              cos4A=1+(-8*cosA^2+8*cosA^4)

              tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)

              五倍角公式:

              sin5A=16sinA^5-20sinA^3+5sinA

              cos5A=16cosA^5-20cosA^3+5cosA

              tan5A=tanA*(5-10*tanA^2+tanA^4)/(1-10*tanA^2+5*tanA^4)

            【三角函數數學手抄報】相關文章:

            數學手抄報08-27

            數學符號的起源數學手抄報10-16

            快樂的數學手抄報11-10

            數學的奧秘手抄報07-30

            小學數學手抄報12-06

            初中數學手抄報07-03

            數學手抄報資料09-26

            數學手抄報的資料12-25

            數學手抄報內容10-08

            <delect id="sj01t"></delect>
            1. <em id="sj01t"><label id="sj01t"></label></em>
            2. <div id="sj01t"></div>
              1. <em id="sj01t"></em>

                      <div id="sj01t"></div>
                      黄色视频在线观看