<delect id="sj01t"></delect>
  1. <em id="sj01t"><label id="sj01t"></label></em>
  2. <div id="sj01t"></div>
    1. <em id="sj01t"></em>

            <div id="sj01t"></div>
            期末考試

            八年級數學上期末試卷及答案

            時間:2025-04-27 20:19:49 期末考試 我要投稿

            八年級數學上期末試卷及答案

              為了幫助大家更好地學習數學,提高數學運算的能力,百分網小編為大家帶來一份八年級數學上的期末試卷及答案,文末附有答案,歡迎大家閱讀參考,更多內容請關注應屆畢業生網!

            八年級數學上期末試卷及答案

              一、選擇題

              1.下列四種圖形中,是軸對稱圖形的為(  )

              A.平行四邊形 B.三角形 C.圓 D.梯形

              2.在 , , , , 中,分式的個數為(  )

              A.2個 B.3個 C.4個 D.5個

              3.計算﹣12a6÷(3a2)的結果是(  )

              A.﹣4a3 B.﹣4a8 C.﹣4a4 D.﹣ a4

              4.一個多邊形的每一個頂點處取一個外角,這些外角中最多有鈍角(  )

              A.1個 B.2個 C.3個 D.4個

              5.若x+m與x+3的乘積中不含x的一次項,則m的值為(  )

              A.0 B.1 C.3 D.﹣3

              6.如圖,在△ABC中,AB=AC,DE垂直平分AB,分別交AB、AC于點D、E,若∠EBC=30°,則∠A=(  )

              A.30° B.35° C.40° D.45°

              7.下列命題正確的是(  )

              A.到角兩邊距離相等的點在這個角的平分線上

              B.垂直于同一條直線的兩條直線互相平行

              C.平行于同一條直線的兩條直線互相平行

              D.等腰三角形的高線、角平分線、中線互相重合

              8.某機床廠原計劃在一定期限內生產240套機床,在實際生產中通過改進技術,結果每天比原計劃多生產4套,并且提前5天完成任務.設原計劃每天生產x套機床,根據題意,下列方程正確的是(  )

              A. B.

              C. D.

              9.如圖,OM平分∠AOB,MC∥OB,MD⊥OB于D,若∠OMD=75°,OC=8,則MD的長為(  )

              A.2 B.3 C.4 D.5

              10.無論x、y取任何值,多邊形x2+y2﹣2x﹣4y+6的值總是(  )

              A.正數 B.負數 C.非正數 D.非負數

              二、填空題(共8小題,每小題3分,滿分24分)

              11.已知等腰三角形兩個內角度數之比是1:4,則這個等腰三角形的底角為      .

              12.若(ambnb)3=a9b15,那么m+n=      .

              13.三角形的三邊長分別為3cm,5cm,xcm,則x的取值范圍是      .

              14.如圖,AB∥CF,E為DF中點,AB=20,CF=15,則BD=      .

              15.若一個多邊形的內角和等于其外角和的2倍,則它是      邊形.

              16.若方程 無解,則k的值為      .

              17.如圖,△ABC中,DE是AC的垂直平分線,AE=4cm,△ABD的周長為14cm,則△ABC的周長為      .

              18.已知P(5,5),點B、A分別在x的正半軸和y的正半軸上,∠APB=90°,則OA+OB=      .

              三、解答題(共8小題,滿分66分)

              19.計算:

              (1)﹣ m2n•(﹣mn2)2

              (2)(x2﹣2x)(2x+3)÷(2x)

              (3)(2x+y)(2x﹣y)+(x+y)2﹣2(2x2+xy)

              (4)(ab﹣b2) .

              20.分解因式:

              (1)ax4﹣9ay2

              (2)2x3﹣12x2+18x.

              21.解方程: .

              22.先化簡再求值:(1﹣ ) ,其中x=( )﹣1+30.

              23.如圖,在平面直角坐標系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).

              (1)求出△ABC的面積;

              (2)在圖中作出△ABC關于y軸的對稱圖形△A1B1C1;

              (3)寫出點A1,B1,C1的坐標.

              24.如圖,已知點P在AB上,∠APD=∠APC,∠DBA=∠CBA,求證:AC=AD.

              25.紅紅開車從營口到盤錦奶奶家去,她去時因有事要辦經過外環公路,全程84千米,返回時經過遼河大橋,全程45千米,紅紅開車去時的平均速度是返回的1.2倍,所用時間卻比返回時多20分鐘,求紅紅返回時的車速.

              26.如圖,△ABC和△AED為等腰三角形,AB=AC,AD=AE,且∠BAC=∠DAE.連接BE、CD交于點O,連接AO并延長交CE為點H.

              求證:∠COH=∠EOH.

             

              參考答案與試題解析

              一、選擇題(共10小題,每小題3分,滿分30分)

              1.下列四種圖形中,是軸對稱圖形的為(  )

              A.平行四邊形 B.三角形 C.圓 D.梯形

              【考點】軸對稱圖形.

              【分析】根據軸對稱圖形的概念:如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形,這條直線叫做對稱軸,依據定義即可得出結果.

              【解答】解:A、平行四邊形不是軸對稱圖形,故本選項錯誤;

              B、三角形不一定是軸對稱圖形,故本選項錯誤;

              C、圓是軸對稱圖形,故本選項正確;

              D、梯形不一定是軸對稱圖形,故本選項錯誤.

              故選C.

              2.在 , , , , 中,分式的個數為(  )

              A.2個 B.3個 C.4個 D.5個

              【考點】分式的定義.

              【分析】根據分式與整式的定義對各式進行逐一分析即可.

              【解答】解: , 的分母中含有未知數,是分式;

              , , 的分母中不含有未知數,是整式.

              故選A.

              3.計算﹣12a6÷(3a2)的結果是(  )

              A.﹣4a3 B.﹣4a8 C.﹣4a4 D.﹣ a4

              【考點】整式的除法.

              【分析】根據單項式相除,把系數與同底數冪分別相除作為商的因式,對于只在被除式里含有的字母,則連同它的指數作為商的一個因式計算.

              【解答】解:﹣12a6÷(3a2)

              =(﹣12÷3)•(a6÷a2)

              =﹣4a4.

              故選C.

              4.一個多邊形的每一個頂點處取一個外角,這些外角中最多有鈍角(  )

              A.1個 B.2個 C.3個 D.4個

              【考點】多邊形內角與外角.

              【分析】根據多邊形的外角和等于360°,所以外角中鈍角最多有三個.

              【解答】解:∵多邊形的外角和等于360°,

              ∴外角中鈍角最多有3個.

              故選C.

              5.若x+m與x+3的乘積中不含x的一次項,則m的值為(  )

              A.0 B.1 C.3 D.﹣3

              【考點】多項式乘多項式.

              【分析】先根據已知式子,可找出所有含x的項,合并系數,令含x項的系數等于0,即可求m的值.

              【解答】解:(x+m)(x+3)=x2+(m+3)x+3m,

              ∵乘積中不含x的一次項,

              ∴m+3=0,

              ∴m=﹣3.

              故選D.

              6.如圖,在△ABC中,AB=AC,DE垂直平分AB,分別交AB、AC于點D、E,若∠EBC=30°,則∠A=(  )

              A.30° B.35° C.40° D.45°

              【考點】線段垂直平分線的性質;等腰三角形的性質.

              【分析】設∠A為x,根據線段的垂直平分線的性質得到EA=EB,用x表示出∠BEC,根據等腰三角形的性質得到∠ABC=∠C,根據三角形內角和定理列出方程,解方程即可.

              【解答】解:設∠A為x,

              ∵DE垂直平分AB,

              ∴EA=EB,

              ∴∠EBA=∠A=x,

              ∴∠BEC=2x,

              ∵AB=AC,

              ∴∠ABC=∠C,

              ∴30°+x+30°+2x=180°,

              解得,x=40°,

              故選:C.

              7.下列命題正確的是(  )

              A.到角兩邊距離相等的點在這個角的平分線上

              B.垂直于同一條直線的兩條直線互相平行

              C.平行于同一條直線的兩條直線互相平行

              D.等腰三角形的高線、角平分線、中線互相重合

              【考點】命題與定理.

              【分析】利用前提條件的缺失可對A、B進行判斷;根據平行線的性質對C進行判斷;根據等腰三角形的性質對D進行判斷.

              【解答】解:A、在平面內,到角兩邊距離相等的點在這個角的平分線上,所以A選項的說法不正確;

              B、在同一平面內,垂直于同一條直線的兩條直線互相平行,所以B選項的說法不正確;

              C、平行于同一條直線的兩條直線互相平行,所以C選項的說法正確;

              D、等腰三角形底邊上的高線、頂角的角平分線和底邊上的中線互相重合,所以D選項的說法不正確.

              故選C.

              8.某機床廠原計劃在一定期限內生產240套機床,在實際生產中通過改進技術,結果每天比原計劃多生產4套,并且提前5天完成任務.設原計劃每天生產x套機床,根據題意,下列方程正確的是(  )

              A. B.

              C. D.

              【考點】由實際問題抽象出分式方程.

              【分析】關鍵描述語為:提前5天完成任務.等量關系為:原計劃用的時間﹣5=實際用的時間.

              【解答】解:實際用的時間為: ;原計劃用的時間為: .方程可表示為: .

              故選B.

              9.如圖,OM平分∠AOB,MC∥OB,MD⊥OB于D,若∠OMD=75°,OC=8,則MD的長為(  )

              A.2 B.3 C.4 D.5

              【考點】含30度角的直角三角形;角平分線的性質;等腰三角形的判定與性質.

              【分析】作ME⊥OB于E,根據直角三角形的性質求出∠MOD=15°,根據角平分線的定義求出∠AOB的度數,根據平行線的性質得到∠ECM=∠AOB=30°,根據直角三角形的性質求出EM,根據角平分線的性質得到答案.

              【解答】解:作ME⊥OB于E,

              ∵MD⊥OB,∠OMD=75°,

              ∴∠MOD=15°,

              ∵OM平分∠AOB,

              ∴∠AOB=2∠MOD=30°,

              ∵MC∥OB,

              ∴∠ECM=∠AOB=30°,

              ∴EM= MC=4,

              ∵OM平分∠AOB,MD⊥OB,ME⊥OB,

              ∴MD=ME=4,

              故選:C.

              10.無論x、y取任何值,多邊形x2+y2﹣2x﹣4y+6的值總是(  )

              A.正數 B.負數 C.非正數 D.非負數

              【考點】配方法的應用;非負數的性質:偶次方.

              【分析】利用完全平方公式把多項式分組配方變形后,利用非負數的性質判斷即可.

              【解答】解:∵x2+y2﹣2x﹣4y+6=(x2﹣2x+1)+(y2﹣4y+4)+1=(x﹣1)2+(y﹣2)2+1≥1>0,

              ∴多項式的值總是正數.

              故選:A.

              二、填空題(共8小題,每小題3分,滿分24分)

              11.已知等腰三角形兩個內角度數之比是1:4,則這個等腰三角形的底角為 80°或30° .

              【考點】等腰三角形的性質.

              【分析】設兩個角分別是x,4x,根據三角形的內角和定理分情況進行分析,從而可求得頂角的度數.

              【解答】設兩個角分別是x,4x

              ①當x是底角時,根據三角形的內角和定理,得x+x+4x=180°,解得,x=30°,4x=120°,即底角為30°;

              ②當x是頂角時,則x+4x+4x=180°,解得,x=20°,底角為80°;

              所以該三角形的底角為80°或30°.

              故答案為:80°或30°.

              12.若(ambnb)3=a9b15,那么m+n= 7 .

              【考點】冪的乘方與積的乘方.

              【分析】利用積的乘方運算法則得出關于m,n的等式進而求出答案.

              【解答】解:∵(ambnb)3=a9b15,

              ∴3m=9,2(n+1)=15,

              解得:m=3,n=4,

              則m+n=7.

              故答案為:7.

              13.三角形的三邊長分別為3cm,5cm,xcm,則x的取值范圍是 2

              【考點】三角形三邊關系.

              【分析】根據三角形的三邊關系定理:三角形兩邊之和大于第三邊.三角形的兩邊差小于第三邊可得5﹣3

              【解答】解:由三角形的三邊關系定理可得:

              5﹣3

              即:2

              故答案為:2

              14.如圖,AB∥CF,E為DF中點,AB=20,CF=15,則BD= 5 .

              【考點】全等三角形的判定與性質.

              【分析】根據平行的性質求得內錯角相等,已知對頂角相等,又知E是DF的中點,所以根據ASA得出△ADE≌△CFE,從而得出AD=CF,已知AB,CF的長,那么BD的長就不難求出.

              【解答】解:∵AB∥FC,

              ∴∠ADE=∠EFC,

              ∵E是DF的中點,

              ∴DE=EF,

              在△ADE與△CFE中,

              ,

              ∴△ADE≌△CFE,

              ∴AD=CF,

              ∵AB=20,CF=15,

              ∴BD=AB﹣AD=20﹣15=5.

              故答案為:5.

              15.若一個多邊形的內角和等于其外角和的2倍,則它是 六 邊形.

              【考點】多邊形內角與外角.

              【分析】根據多邊形的內角和公式與外角和定理列出方程,然后解方程即可.

              【解答】解:設這個多邊形是n邊形,根據題意得,

              (n﹣2)•180°=2×360°,

              解得n=6.

              故答案為:六.

              16.若方程 無解,則k的值為 ﹣2 .

              【考點】分式方程的解.

              【分析】先把方程兩邊乘以(x﹣3)得到2=x﹣3﹣k,則x=5+k,當x=3時,方程 無解,即3=5+k,解關于k的方程即可.

              【解答】解:去分母得,2=x﹣3﹣k,

              ∴x=5+k,

              當x=3時,方程 無解,

              ∴3=5+k,

              ∴k=﹣2.

              故答案為﹣2.

              17.如圖,△ABC中,DE是AC的垂直平分線,AE=4cm,△ABD的周長為14cm,則△ABC的周長為 22cm .

              【考點】線段垂直平分線的性質.

              【分析】根據線段垂直平分線性質求出AD=DC,根據△ABD的周長求出AB+BC=14cm,即可求出答案.

              【解答】解:∵DE是AC的垂直平分線,AE=4cm,

              ∴AC=2AE=8cm,AD=DC,

              ∵△ABD的周長為14cm,

              ∴AB+AD+BD=14cm,

              ∴AB+AD+BD=AB+DC+BD=AB+BC=14cm,

              ∴△ABC的周長為AB+BC+AC=14cm+8cm=22cm,

              故答案為:22cm

              18.已知P(5,5),點B、A分別在x的正半軸和y的正半軸上,∠APB=90°,則OA+OB= 10 .

              【考點】全等三角形的判定與性質;坐標與圖形性質.

              【分析】過P作PM⊥y軸于M,PN⊥x軸于N,得出四邊形PMON是正方形,推出OM=OM=ON=PN=5,證△APM≌△BPN,推出AM=BN,求出OA+OB=ON+OM,代入求出即可.

              【解答】解:過P作PM⊥y軸于M,PN⊥x軸于N,如圖所示:

              ∵P(5,5),

              ∴PN=PM=5,

              ∵x軸⊥y軸,

              ∴∠MON=∠PNO=∠PMO=90°,

              ∴∠MPN=360°﹣90°﹣90°﹣90°=90°,

              則四邊形MONP是正方形,

              ∴OM=ON=PN=PM=5,

              ∵∠APB=90°,

              ∴∠APB=∠MON,

              ∴∠MPA=90°﹣∠APN,∠BPN=90°﹣∠APN,

              ∴∠APM=∠BPN,

              在△APM和△BPN中, ,

              ∴△APM≌△BPN(ASA),

              ∴AM=BN,

              ∴OA+OB=OA+0N+BN=OA+ON+AM=ON+OM=5+5=10

              故答案為:6.

              三、解答題(共8小題,滿分66分)

              19.計算:

              (1)﹣ m2n•(﹣mn2)2

              (2)(x2﹣2x)(2x+3)÷(2x)

              (3)(2x+y)(2x﹣y)+(x+y)2﹣2(2x2+xy)

              (4)(ab﹣b2) .

              【考點】整式的混合運算;分式的乘除法.

              【分析】(1)根據積的乘方和冪的乘方進行計算即可;

              (2)根據多項式的乘除法法則進行計算即可;

              (3)根據平方差公式和完全平方公式進行計算即可;

              (4)根據整式除以分式的法則進行計算即可.

              【解答】解:(1)原式=﹣ m2n•m2n4

              =﹣ m4n5;

              (2)原式=(2x3﹣x2﹣6x)÷(2x)

              =x2﹣ x﹣3;

              (3)原式=4x2﹣y2+x2+2xy+y2﹣4x2﹣2xy

              =x2;

              (4)原式=b(a﹣b)•

              =b.

              20.分解因式:

              (1)ax4﹣9ay2

              (2)2x3﹣12x2+18x.

              【考點】提公因式法與公式法的綜合運用.

              【分析】(1)首先提取公因式a,再利用平方差公式進行分解即可;

              (2)首先提取公因式2x,再利用完全平方公式進行分解即可.

              【解答】解:(1)原式=a(x4﹣9y2)=a(x2﹣3y)(x2+3y);

              (2)原式=2x(x2﹣6x+9)=2x(x﹣3)2.

              21.解方程: .

              【考點】解分式方程.

              【分析】觀察可得最簡公分母是3(x﹣1),方程兩邊乘最簡公分母,可以把分式方程轉化為整式方程求解.

              【解答】解:方程的兩邊同乘3(x﹣1),得

              6x=3x﹣3﹣x,

              解得x=﹣ .

              檢驗:把x=﹣ 代入3(x﹣1)≠0.

              故原方程的解為:x=﹣ .

              22.先化簡再求值:(1﹣ ) ,其中x=( )﹣1+30.

              【考點】分式的化簡求值;零指數冪;負整數指數冪.

              【分析】先根據分式混合運算的法則把原式進行化簡,再求出x的值代入進行計算即可.

              【解答】解:原式= •

              = ,

              當x=3+1=4時,原式= =2.

              23.如圖,在平面直角坐標系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).

              (1)求出△ABC的面積;

              (2)在圖中作出△ABC關于y軸的對稱圖形△A1B1C1;

              (3)寫出點A1,B1,C1的坐標.

              【考點】作圖-軸對稱變換.

              【分析】(1)利用長方形的面積剪去周圍多余三角形的面積即可;

              (2)首先找出A、B、C三點關于y軸的對稱點,再順次連接即可;

              (3)根據坐標系寫出各點坐標即可.

              【解答】解:(1)如圖所示:△ABC的面積:3×5﹣ ﹣ ﹣ =6;

              (2)如圖所示:

              (3)A1(2,5),B1(1,0),C1(4,3).

              24.如圖,已知點P在AB上,∠APD=∠APC,∠DBA=∠CBA,求證:AC=AD.

              【考點】全等三角形的判定與性質.

              【分析】由平角的定義得到∠BPD=∠BPC,推出△BDP≌△BCP,根據全等三角形的性質得到BD=BC,證得△ADB≌△ACB,根據全等三角形的性質得到結論.

              【解答】證明:∵∠APD=∠APC,

              ∴∠BPD=∠BPC,

              在△BDP與△BCP中, ,

              ∴△BDP≌△BCP,

              ∴BD=BC,

              在△ADB與△ACB中, ,

              ∴△ADB≌△ACB,

              ∴AC=AD.

              25.紅紅開車從營口到盤錦奶奶家去,她去時因有事要辦經過外環公路,全程84千米,返回時經過遼河大橋,全程45千米,紅紅開車去時的平均速度是返回的1.2倍,所用時間卻比返回時多20分鐘,求紅紅返回時的車速.

              【考點】分式方程的應用.

              【分析】利用路程÷速度=時間,結合開車去時所用時間比返回時多20分鐘,得出等式進而求出答案.

              【解答】解:設紅紅返回時的車速為x千米/時,則去時的平均速度為1.2千米/時,根據題意可得:

              = + ,

              解得:x=75,

              經檢驗得:x=75是原方程的根,

              答:紅紅返回時的車速為75km/h.

              26.如圖,△ABC和△AED為等腰三角形,AB=AC,AD=AE,且∠BAC=∠DAE.連接BE、CD交于點O,連接AO并延長交CE為點H.

              求證:∠COH=∠EOH.

              【考點】全等三角形的判定與性質.

              【分析】過點A分別作AF⊥BE于F,AG⊥CD于G.先證明△BAE≌△CAD,由全等三角形的性質得出AF=AG,得出OA平分∠BOD,再利用對頂角相等,即可得出結論.

              【解答】證明:過點A分別作AF⊥BE于F,AG⊥CD于G.如圖所示:

              ∵∠BAC=∠DAE,

              ∴∠BAE=∠CAD,

              在△BAE和△CAD中, ,

              ∴△BAE≌△CAD(SAS),

              ∴BE=CD,

              ∴AF=AG,

              ∵AF⊥BE于F,AG⊥CD于G,

              ∴OA平分∠BOD,

              ∴∠AOD=∠AOB,

              ∵∠COH=∠AOD,∠EOH=∠AOB,

              ∴∠COH=∠EOH.

            【八年級數學上期末試卷及答案】相關文章:

            2017年八年級數學上期末試卷及答案07-27

            平邑縣八年級數學上期末試卷及答案09-08

            宿州市八年級數學上期末試卷及答案09-05

            汕頭市潮南區八年級數學上期末試卷及答案11-05

            (人教版)五年級數學上冊期末試卷及答案11-27

            二年級數學上冊期末試卷及答案01-13

            夏津縣九年級數學上期末試卷及答案09-23

            小學六年級數學上冊期末試卷及答案01-11

            人教版六年級數學上冊期末試卷及答案06-25

            <delect id="sj01t"></delect>
            1. <em id="sj01t"><label id="sj01t"></label></em>
            2. <div id="sj01t"></div>
              1. <em id="sj01t"></em>

                      <div id="sj01t"></div>
                      黄色视频在线观看