<delect id="sj01t"></delect>
  1. <em id="sj01t"><label id="sj01t"></label></em>
  2. <div id="sj01t"></div>
    1. <em id="sj01t"></em>

            <div id="sj01t"></div>
            教案

            高考函數專項復習教案

            時間:2025-04-02 12:13:11 教案 我要投稿
            • 相關推薦

            高考函數專項復習教案

              ●考點目標定位

            高考函數專項復習教案

              1.理解函數的概念,了解映射的概念.

              2.了解函數的單調性的概念,掌握判斷一些簡單函數的單調性的方法.

              3.了解反函數的概念及互為反函數的函數圖象間的關系,會求一些簡單函數的反函數.

              4.理解分數指數冪的概念,掌握有理指數冪的運算性質,掌握指數函數的概念、圖象和性質.

              5.理解對數的概念,掌握對數的運算性質,掌握對數函數的概念、圖象和性質.

              6.能夠運用函數的性質、指數函數和對數函數的性質解決某些簡單的實際問題.

              ●復習方略指南

              基本函數:一次函數、二次函數、反比例函數、指數函數與對數函數,它們的圖象與性質是函數的基石.求反函數,判斷、證明與應用函數的三大特性(單調性、奇偶性、周期性)是高考命題的切入點,有單一考查(如全國2004年第2題),也有綜合考查(如江蘇2004年第22題).函數的圖象、圖象的變換是高考熱點(如全國2004年Ⅳ,北京2005年春季理2),應用函數知識解其他問題,特別是解應用題能很好地考查學生分析問題、解決問題的能力,這類問題在高考中具有較強的生存力.配方法、待定系數法、數形結合法、分類討論等,這些方法構成了函數這一章應用的廣泛性、解法的多樣性和思維的創造性,這均符合高考試題改革的發展趨勢.

              特別在“函數”這一章中,數形結合的思想比比皆是,深刻理解和靈活運用這一思想方法,不僅會給解題帶來方便,而且這正是充分把握住了中學數學的精髓和靈魂的體現.

              復習本章要注意:

              1.深刻理解一些基本函數,如二次函數、指數函數、對數函數的圖象與性質,對數與形的基本關系能相互轉化.

              2.掌握函數圖象的基本變換,如平移、翻轉、對稱等.

              3.二次函數是初中、高中的結合點,應引起重視,復習時要適當加深加寬.二次函數與二次方程、二次不等式有著密切的聯系,要溝通這些知識之間的內在聯系,靈活運用它們去解決有關問題.

              4.含參數函數的討論是函數問題中的難點及重點,復習時應適當加強這方面的訓練,做到條理清楚、分類明確、不重不漏.

              5.利用函數知識解應用題是高考重點,應引起重視.

              2.1函數的概念

              ●知識梳理

              1.函數的定義:設A、B是非空的數集,如果按某個確定的對應關系f,使對于集合A中的任意一個數x,在集合B中都有唯一確定的數f(x)和它對應,那么就稱f:A→B為從集合A到集合B的一個函數,記作y=f(x),x∈A,其中x叫做自變量.x的取值范圍A叫做函數的定義域;與x的值相對應的y的值叫做函數值,函數值的集合{f(x)x∈A}叫做函數的值域.

              2.兩個函數的相等:函數的定義含有三個要素,即定義域A、值域C和對應法則f.當函數的定義域及從定義域到值域的對應法則確定之后,函數的值域也就隨之確定.因此,定義域和對應法則為函數的兩個基本條件,當且僅當兩個函數的定義域和對應法則都分別相同時,這兩個函數才是同一個函數.

              3.映射的定義:一般地,設A、B是兩個集合,如果按照某種對應關系f,對于集合A中的任何一個元素,在集合B中都有唯一的元素和它對應,那么,這樣的對應(包括集合A、B,以及集合A到集合B的對應關系f)叫做集合A到集合B的映射,記作f:A→B.

              由映射和函數的定義可知,函數是一類特殊的映射,它要求A、B非空且皆為數集.

              特別提示

              函數定義的三要素是理解函數概念的關鍵,用映射的觀點理解函數概念是對函數概念的深化.

            【高考函數專項復習教案】相關文章:

            高考英語動詞短語專項復習10-07

            高考英語介詞及短語專項復習10-13

            函數專項練習(帶答案)10-09

            高考英語一輪復習介詞短語專項練習06-19

            2016年高考語文專項復習題及答案09-19

            高考語文第二輪文言文閱讀專項復習教案10-14

            小升初英語專項復習09-10

            2017年高考生物專項復習題與答案解析07-14

            小升初數學專項復習試題09-28

            <delect id="sj01t"></delect>
            1. <em id="sj01t"><label id="sj01t"></label></em>
            2. <div id="sj01t"></div>
              1. <em id="sj01t"></em>

                      <div id="sj01t"></div>
                      黄色视频在线观看