<delect id="sj01t"></delect>
  1. <em id="sj01t"><label id="sj01t"></label></em>
  2. <div id="sj01t"></div>
    1. <em id="sj01t"></em>

            <div id="sj01t"></div>

            小學六年級奧數題及答案

            時間:2024-08-29 14:59:40 奧數知識 我要投稿
            • 相關推薦

            小學六年級奧數題及答案

              引導語:下面是應屆畢業生培訓網整理而成,小學六年級奧數題及答案,希望能夠幫助到您。

              奧數題一

              一項工作由甲、乙兩人合作,恰可在規定時間內完成,如果甲效率提高三分之一,則只需用規定時間的六分之五即可完成;如果乙效率降低四分之一,那么就要推遲75分鐘才能完成,請問:規定時間是多少小時?

              答案與解析:

              假設甲效率為“6”(不一定設1,為迎合分數湊成整數設數),原合作總效率為6+乙效率

              那么甲效率提高三分之一后,合作總效率為8+乙效率

              所以根據效率比等于時間的反比,6+乙效率:8+乙效率=5:6,得出乙效率為4

              原來總效率=6+4=10

              乙效率降低四分之一后,總效率為6+3=9

              所以同樣根據效率比等于時間的反比可得:10:9=規定時間+75:規定時間

              解得規定時間為675分

              答:規定時間是11小時15分鐘

              奧數題二

              甲乙兩人在A、B兩地間往返散步,甲從A、乙從B同時出發;第一次相遇點距B處60 米。當乙從A處返回時走了lO米第二次與甲相遇。A、B相距多少米?

              答案與解析:“第一次相遇點距B處60 米”意味著乙走了60米和甲相遇,根據總結,兩次相遇兩人總共走了3個全程,一個全程里乙走了60,則三個全程里乙走了3×60=180米,第二次相遇是距A地10米。畫圖我們可以發現乙走的路程是一個全程多了10米,所以A、B相距=180-10=170米。

              奧數題三

              把1至2005這2005個自然數依次寫下來得到一個多位數123456789.....2005,這個多位數除以9余數是多少?

              答案與解析:

              首先研究能被9整除的數的特點:如果各個數位上的數字之和能被9整除,那么這個數也能被9整除;如果各個位數字之和不能被9整除,那么得的余數就是這個數除以9得的余數。

              解題:首先,任意連續9個自然數之和能被9整除,也就是說,一直寫到2007能被9整除。所以答案為1

              奧數題四

              現有濃度為10%的鹽水20千克,在該溶液中再加入多少千克濃度為30%的鹽水,可以得到濃度為22%的鹽水?

              答案與解析:

              10%與30%的鹽水重量之比為(30%-22%):(22%-10%)=2:3,因此需要30%的鹽水20÷2×3=30克。

              奧數題五

              瓶子里裝有濃度為15%的酒精1000克.現在又分別倒入100克和400克的A、B兩種酒精,瓶子里的酒精濃度變為14%.已知A種酒精的濃度是B種酒精的2倍,答案與解析:

              依題意,A種酒精濃度是B種酒精的2倍.設B種酒精濃度為x%,則A種酒精濃度為2x%.A種酒精溶液10O克,因此100×2x%為100克酒精溶液中含純酒精的克數.B種酒精溶液40O克,因此400×x%為400克酒精溶液中含純酒精的克數.

              解:設B種酒精濃度為x%,則A種酒精的濃度為2x%.求A種酒精的濃度.

              奧數題六

              某城出租車的計價方式為:起步價是3千米8元,之后每增加2千米(不足2千米按2千米計算)增加3元.現從甲地到乙地乘出租車共支出車費44元;如果從甲地到乙地先步行900米,然后再乘出租車只要41元,那么從甲、乙兩地的中點乘出租車到乙地需支付多少錢?

              答案與解析:

              (1)由44=8+3×12得:甲乙兩地的距離介于3+11×2和3+12×2之間,也就是25<27;< p>

              (2)又由41=8+3×11得:甲地前行900米以后,距離乙地介于3+10×2和3+11×2之間,也就是23<25;即:23.9<25.9< p>

              綜上所述可得:甲乙兩地距離介于25千米和25.9千米之間,即25<25.9;所以得到甲乙中點距離乙介于25÷2和25.9÷2之間,即12.5<<12.95;< p>

              那么除掉起步的3千米的距離,之后增加的距離為:9.5<<9.95

              也就是說除起步價距離,增加的距離介于4個2米和5個2米之間

              所以就按照5個2千米來進行收費;

              應該支付的錢數為:8+3×5=23元

              奧數題七

              計算4.75-9.63+(8.25-1.37)

              原式=4.75+8.25-9.63-1.37

              =13-(9.63+1.37)

              =13-11

              =2

              奧數題八

              小軍騎自行車從甲地到乙地,出發時心理盤算了一下,慢慢地騎行,每小時行10千米,下午1時才能到;使勁地趕路,每小時行15千米,上午11時就能到,如果要正好在中午12時到,每小時應行多少千米?

              解:題中的條件,兩個不同的騎車速度,行兩地路程到達的時間分別是下午1時和上午11時,即后一速度用的時間比前一速度少2小時,為便于比較,可以以行到下午1時作為標準,算出用后一速度行到下午1時,從甲地到乙地可以比前一速度多行15×2=30(千米),這樣,兩組對應數量如下:

              每小時行10千米 下午1時正好從甲地到乙地

              每小時行15千米 下午1時比從甲地到乙地多行30千米

              上下對比每小時多行15-10=5(千米),行同樣時間多行30千米,從出發到下午1時,用的時間是30÷5=6(小時),甲地到乙地的路程是 10×6=60(千米),行6小時,下午1時到達,出發的時間是上午7時,要在中午12時到,即行12-7=5(小時),每小時應行60÷5=12(千米)。

              答:每小時應行12千米。

            【小學六年級奧數題及答案】相關文章:

            小升初經典奧數題及答案解析01-22

            初中奧數題大全及答案03-29

            小學奧數經典應用題答案詳解03-30

            小升初奧數真題以及答案02-25

            小學奧數應用題及參考答案04-04

            小學經典奧數題大全03-07

            小學奧數經典應用題03-30

            小學奧數應用題03-20

            植樹問題小學奧數應用題題型及答案參考07-07

            <delect id="sj01t"></delect>
            1. <em id="sj01t"><label id="sj01t"></label></em>
            2. <div id="sj01t"></div>
              1. <em id="sj01t"></em>

                      <div id="sj01t"></div>
                      黄色视频在线观看